全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚合物介导的红细胞免疫修饰:聚合物分子大小在血细胞抗原识别中的效果

, PP. 429-438

Keywords: 甲氧基聚乙二醇,红细胞,血型抗原,小鼠,异体免疫

Full-Text   Cite this paper   Add to My Lib

Abstract:

降低血型抗原的异体免疫水平对于慢性输血病人有很重要的临床意义.利用甲氧基聚乙二醇修饰红细胞的策略,可以免疫修饰血型抗原以降低红细胞的异体免疫水平.本研究显示,抗体识别非ABO的水平随甲氧基聚乙二醇的分子大小和浓度的升高而显著下降,分子量大的多聚体的免疫保护作用比分子量小的显著.同时,动物实验表明,甲氧基聚乙二醇修饰的异种红细胞(羊红细胞)以及同种不同品系(C57Bl/6)或自体(Balb/c)红细胞的体内免疫原性均明显降低.与对照相比,小鼠接受甲氧基聚乙二醇修饰的绵羊血,发现抗绵羊红细胞的抗体产生降低了90%.与对照相比,两次输入甲氧基聚乙二醇修饰的绵羊血的小鼠,抗绵羊血抗体产生降低了80%.尤为重要的是,甲氧基聚乙二醇修饰的自体血细胞没有诱导新抗原的产生,也没有IgG或IgM应答.以上结果表明,聚合物对红细胞的免疫修饰可以安全有效地降低异体免疫的水平,具有潜在的输血医学临床应用价值.

References

[1]  1 RH W, Lin D T, Hartwick M B. Alloimmunization following blood transfusion. Arch Pathol Lab Med, 1989, 113: 254-261
[2]  2 Ambruso D R, Githens J H, Alcorn R, et al. Experience with donors matched for minor blood group antigens in patients with sickle cellanemia who are receiving chronic transfusion therapy. Transfusion, 1987, 27: 94-98??
[3]  3 Fluit C R, Kunst V A, Drenthe-Schonk A M. Incidence of red cell antibodies after multiple blood transfusion. Transfusion, 1990, 30:532-535??
[4]  4 Vichinsky E P, Earles A, Johnson R A, et al. Alloimmunization in sickle cell anemia and transfusion of racially unmatched blood. New EngJ Med, 1990, 322: 1617-1621??
[5]  5 Michail-Merianou V, Pamphili-Panousopoulou L, Piperi-Lowes L, et al. Alloimmunization to red cell antigens in thalassemia: comparativestudy of usual versus better-match transfusion programmes. Vox Sang, 1987, 52: 95-98??
[6]  6 McPherson M E, Anderson A R, Haight A E, et al. Transfusion management of sickle cell patients during bone marrow transplantation withmatched sibling donor. Transfusion, 2009, 49: 1977-1986??
[7]  7 Shulman I A. Prophylactic phenotype matching of donors for the transfusion of nonalloimmunized patients with sickle cell disease.Immunohematology, 2006, 22: 101-102
[8]  8 Castro O, Sandler S G, Houston-Yu P, et al. Predicting the effect of transfusing only phenotype-matched RBCs to patients with sickle celldisease: theoretical and practical implications. Transfusion, 2002, 42: 684-690??
[9]  9 Scott M D, Murad K L, Koumpouras F, et al. Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc Natl Acad Sci USA,1997, 94: 7566-7571??
[10]  10 Murad K L, Mahany K L, Brugnara C, et al. Structural and functional consequences of antigenic modulation of red blood cells withmethoxypoly(ethylene glycol). Blood, 1999, 93: 2121-2127
[11]  11 Bradley A J, Test S T, Murad K L, et al. Interactions of IgM ABO antibodies and complement with methoxy-PEG-modified human RBCs.Transfusion, 2001, 41: 1225-1233??
[12]  12 Bradley A J, Murad K L, Regan K L, et al. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size doesmatter. Biochim Biophys Acta, 2002, 1561: 147-158??
[13]  13 Bradley A J, Scott M D. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning. JChromatogr B Analyt Technol Biomed Life Sci, 2004, 807: 163-168??
[14]  14 Bradley A J, Scott M D. Immune complex binding by immunocamouflaged
[15]  [poly(ethylene glycol)-grafted] erythrocytes. Am J Hematol,2007, 82: 970-975??
[16]  15 Armstrong J K, Meiselman H J, Fisher T C. Covalent binding of poly(ethylene glycol) (PEG) to the surface of red blood cells inhibitsaggregation and reduces low shear blood viscosity. Am J Hematol, 1997, 56: 26-28??
[17]  16 Armstrong J K, Meiselman H J, Wenby R B, et al. Modulation of red blood cell aggregation and blood viscosity by the covalent attachmentof Pluronic copolymers. Biorheology, 2001, 38: 239-247
[18]  17 Hortin G L, Lok H T, Huang S T. Progress toward preparation of universal donor red cells. Artif Cells Blood Substit Immobil Biotechnol,1997, 25: 487-491??
[19]  18 Tan Y, Qiu Y, Xu H, et al. Decreased immunorejection in unmatched blood transfusions by attachment of methoxypolyethylene glycol onhuman red blood cells and the effect on D antigen. Transfusion, 2006, 46: 2122-2127??
[20]  19 Tan Y, Ji S, Li S, et al. Comparative assessment of normal and methoxypolyethylene glycol-modified murine red cells on swimmingendurance and hippocampal injury in hypoxic mice. Transfusion, 2008, 48: 1954-1958??
[21]  20 Le Y, Scott M D. Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol)
[22]  [mpeg]. ActaBiomater, 2010, 6: 2631-2641
[23]  21 Chen A M, Scott M D. Immunocamouflage: prevention of transfusion-induced graft-versus-host disease via polymer grafting of donor cells.J Biomed Mater Res A, 2003, 67: 626-636
[24]  22 Chen A M, Scott M D. Comparative analysis of polymer and linker chemistries on the efficacy of immunocamouflage of murine leukocytes.Artif Cells Blood Substit Immobil Biotechnol, 2006, 34: 305-322??
[25]  25 Beattie K M, Shafer A W. Broadening the base of a rare donor program by targeting minority populations. Transfusion, 1986, 26: 401-404??
[26]  26 Thompson A A. Advances in the management of sickle cell disease. Pediatr Blood Cancer, 2006, 46: 533-539??
[27]  27 Murad K L, Gosselin E J, Eaton J W, et al. Stealth cells: prevention of major histocompatibility complex class II-mediated T-cell activationby cell surface modification. Blood, 1999, 94: 2135-2141
[28]  28 Hughes-Jones N C, Gardner B, Lincoln P J. Observation of the number of available c, D, and E antigen sites on red cells. Vox Sang, 1971,21: 210-216??
[29]  29 Masouredis S P, Sudora E, Mahan L, et al. Quatitative immunoferritin microscopy of Fy-a, Fy-b, Jk-a, U, and Di-b antigen site numbers onhuman red cells. Blood, 1980, 56: 969-977
[30]  30 Skov F, Hughes-Jones N C. Observations on the number of available C antigen sites on red cells. Vox Sang, 1977, 33: 170-174??
[31]  31 Richter A W, Akerblom E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethyleneglycol modified proteins. Int Arch Allergy Appl Immunol, 1983, 70: 124-131??
[32]  32 Richter A W, Akerblom E. Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxypolyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Arch Allergy Appl Immunol, 1984, 74: 36-39??
[33]  33 Armstrong J K, Hempel G, Koling S, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acutelymphoblastic leukemia patients. Cancer, 2007, 110: 103-111??
[34]  34 Garratty G. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox Sang, 2008, 94: 87-95
[35]  35 Sutton T C, Scott M D. The effect of grafted methoxypoly(ethylene glycol) chain length on the inhibition of respiratory syncytial virus(RSV) infection and proliferation. Biomaterials, 2010, 31: 4223-4230??
[36]  36 Martin S. Fundamentals of Immunology for Blood Bankers. In: Harmening, ed. Modern Blood Banking and Transfusion Practices. 4th ed.Philadelphia, Pennsylvania: F.A. Davis Company, 1994. 43-68
[37]  23 Reid M E, Lomas-Francis C. The Blood Group Antigen Facts Book. San Diego: Academic Press, 2003
[38]  24 Issitt P D. Race-related red cell alloantibody problems. Br J Biomed Sci, 1994, 51: 158-167

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133