全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

microRNA在心脏发育和心脏疾病中的作用

DOI: 10.1360/052011-660, PP. 957-966

Keywords: microRNA,心脏发育,心脏疾病

Full-Text   Cite this paper   Add to My Lib

Abstract:

microRNA是一种内源性的小核苷酸片段,它可以通过促进mRNA的降解或抑制mRNA的翻译对其靶基因的表达发挥负调控作用.最近的研究报道,一系列心脏特异性的microRNA能够调控心脏的发育过程,包括心肌细胞分化、增殖、凋亡和衰老等.另外,microRNA在一些心脏疾病的发生、发展中发挥作用,包括心肌肥大、心律失常、心肌梗死、心力衰竭等.本文综合近期的研究,对microRNA在心脏发育和心脏疾病中的作用进行综述.

References

[1]  42 Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA-499 as a biomarker of acute myocardial infarction. Clin Chem, 2010, 56: 1183-1185??
[2]  43 Cortez M A, Calin G A. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther, 2009, 9: 703-711??
[3]  44 Tang Y, Zheng J, Sun Y, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J, 2009, 50: 377-387??
[4]  45 Shan Z X, Lin Q X, Fu Y H, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun, 2009, 381: 597-601??
[5]  46 Ren X P, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation, 2009, 119: 2357-2366??
[6]  47 Fan G C, Ren X, Qian J, et al. Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation, 2005, 111: 1792-1799
[7]  48 Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem, 2009, 284: 29514-29525??
[8]  49 Wang J X, Jiao J Q, Li Q, et al. MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med, 2011, 17: 71-78??
[9]  50 Zhu W, Yang L, Shan H, et al. MicroRNA expression analysis: clinical advantage of propranolol reveals key microRNAs in myocardial infarction. PLoS one, 2012, 6: e14736
[10]  51 Hu S, Huang M, Li Z, et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation, 2010, 122: S124-131??
[11]  52 Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 2007, 116: 258-267??
[12]  53 Tijsen A J, Creemers E E, Moerland P D, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res, 2010, 106: 1035-1039??
[13]  54 van Rooij E, Sutherland L B, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA, 2006, 103: 18255-18260??
[14]  55 Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes, 2012, 61: 1633-1641??
[15]  56 Cheng Y, Liu X, Zhang S, et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol, 2009, 47: 5-14??
[16]  57 Wang X, Zhang X, Ren X P, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion- induced cardiac injury. Circulation, 2010, 122: 1308-1318??
[17]  58 Li J, Donath S, Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 2010, 6: e1000795??
[18]  59 Knezevic I, Patel A, Sundaresan N R, et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J Biol Chem, 2012, 287: 12913-12926
[19]  60 Small E M, Frost R J, Olson E N. MicroRNAs add a new dimension to cardiovascular disease. Circulation, 2010, 121: 1022-1032??
[20]  61 Grueter C E, van Rooij E, Johnson B A, et al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell, 2012, 149: 671-683??
[21]  62 Jayawardena T M, Egemnazarov B, Finch E A, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res, 2012, 110: 1465-1473??
[22]  63 Das S, Ferlito M, Kent O A, et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res, 2012, 110: 1596-1603??
[23]  64 Montgomery R L, Hullinger T G, Semus H M, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 2011, 124: 1537-1547??
[24]  65 Hosoda T, Zheng H, Cabral-da-Silva M, et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation, 2011, 123: 1287-1296??
[25]  1 Olson E N. Gene regulatory networks in the evolution and development of the heart. Science, 2006, 313: 1922-1927??
[26]  2 Sakabe M, Matsui H, Sakata H, et al. Understanding heart development and congenital heart defects through developmental biology: a segmental approach. Congenit Anom (Kyoto), 2005, 45: 107-118??
[27]  3 Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75: 855-862??
[28]  4 Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901-906??
[29]  5 Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854
[30]  6 Zhao Y, Ransom J F, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 2007, 129: 303-317
[31]  7 da Costa Martins P A, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation, 2008, 118: 1567-1576??
[32]  8 van Rooij E, Liu N, Olson E N. MicroRNAs flex their muscles. Trends Genet, 2008, 24: 159-166??
[33]  9 Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006, 38: 228-233??
[34]  10 Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436: 214-220??
[35]  11 Ikeda S, He A, Kong S W, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol, 2009, 29: 2193-2204??
[36]  12 Ivey K N, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2008, 2: 219-229??
[37]  13 Morkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech, 2000, 50: 522-531??
[38]  14 Gupta M P. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol, 2007, 43: 388-403??
[39]  15 Krenz M, Robbins J. Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol, 2004, 44: 2390-2397??
[40]  16 McGuigan K, Phillips P C, Postlethwait J H. Evolution of sarcomeric myosin heavy chain genes: evidence from fish. Mol Biol Evol, 2004, 21: 1042-1056??
[41]  17 Callis T E, Pandya K, Seok H Y, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest, 2009, 119: 2772-2786??
[42]  18 van Rooij E, Quiat D, Johnson B A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell, 2009, 17: 662-673??
[43]  19 Cook S A, Matsui T, Li L, et al. Transcriptional effects of chronic Akt activation in the heart. J Biol Chem, 2002, 277: 22528-22533??
[44]  20 Ito M, Roeder R G. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab, 2001, 12: 127-134??
[45]  21 Lee S J. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol, 2004, 20: 61-86??
[46]  22 van Rooij E, Sutherland L B, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007, 316: 575-579??
[47]  23 Liu N, Olson E N. MicroRNA regulatory networks in cardiovascular development. Dev Cell, 2010, 18: 510-525??
[48]  24 Frey N, Katus H A, Olson E N, et al. Hypertrophy of the heart: a new therapeutic target? Circulation, 2004, 109: 1580-1589
[49]  25 van Rooij E, Marshall W S, Olson E N. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res, 2008, 103: 919-928??
[50]  26 Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med, 2007, 13: 613-618??
[51]  27 Liu N, Bezprozvannaya S, Williams A H, et al. MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev, 2008, 22: 3242-3254??
[52]  28 Tatsuguchi M, Seok H Y, Callis T E, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol, 2007, 42: 1137-1141??
[53]  29 Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol, 2007, 170: 1831-1840
[54]  30 Luo X, Lin H, Pan Z, et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem, 2008, 283: 20045-20052??
[55]  31 Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med, 2007, 13: 486-491??
[56]  32 Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology, 2010, 115: 163-169
[57]  33 Matkovich S J, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res, 2010, 106: 166-175??
[58]  34 Lu Y, Zhang Y, Wang N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation, 2010, 122: 2378-2387??
[59]  35 Duisters R F, Tijsen A J, Schroen B, et al. MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res, 2009, 104: 170-178, 176p following 178??
[60]  36 Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456: 980-984??
[61]  37 Roy S, Khanna S, Hussain S R, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res, 2009, 82: 21-29??
[62]  38 van Rooij E, Sutherland L B, Thatcher J E, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA, 2008, 105: 13027-13032??
[63]  39 Wang J, Huang W, Xu R, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med, 2012, 16: 2150-2160??
[64]  40 Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury. Clin Chem, 2009, 55: 1944-1949??
[65]  41 Wang G K, Zhu J Q, Zhang J T, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 2010, 31: 659-666??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133