全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量

, PP. 919-925

Keywords: 原子力显微镜,红细胞,癌细胞,机械特性,杨氏模量

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞机械特性在细胞生命活动中起重要的调控作用,有关细胞机械特性的研究对于破解生命的奥秘具有重要意义.原子力显微镜(AFM)的出现使人们可以在生理环境下对活体状态的细胞机械特性进行测量,在单细胞水平提供了有关细胞机械特性的新认识.利用AFM研究了红细胞和3种不同侵袭程度癌细胞(Burkitt淋巴瘤Raji细胞、皮肤淋巴瘤Hut细胞、慢性粒细胞白血病K562细胞)的形貌结构及机械特性.利用常规AFM探针对红细胞和3种癌细胞的表面形貌进行扫描成像,通过环氧树脂胶水将微球黏附到探针悬臂梁上制成球形探针,并利用球形探针测量了活体状态的红细胞和不同侵袭程度癌细胞的机械特性.研究结果表明,红细胞的尺寸明显小于癌细胞,红细胞的杨氏模量最小,侵袭性越强的癌细胞,其杨氏模量越小,而侵袭性较弱的癌细胞,其杨氏模量也较大.本研究加深了人们对癌细胞转移的认识.

References

[1]  1 Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton. Nature, 2010, 463: 485-492??
[2]  2 Butcher D T, Alliston T, Weaver V M. A tense situation: forcing tumor progression. Nat Rev Cancer, 2009, 9: 108-122??
[3]  3 Hoffman B D, Grashoff C, Schwartz M A. Dynamic molecular processes mediate cellular mechanotransduction. Nature, 2011, 475: 316-323??
[4]  4 Janmey P A, McCulloch C A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng, 2007, 9: 1-34??
[5]  5 Lim C T, Zhou E H, Quek S T. Mechanical models for living cells—a review. J Biomech, 2006, 39: 195-216??
[6]  6 Li Q S, Lee G Y H, Ong C N, et al. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun, 2008, 374: 609-613??
[7]  7 Suresh S. Biomechanics and biophysics of cancer cells. Acta Biomater, 2007, 3: 413-438??
[8]  8 Cross S E, Jin Y S, Rao J Y, et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol, 2007, 2: 780-783??
[9]  9 Suresh S. Elastic clues in cancer detection. Nat Nanotechnol, 2007, 2: 748-749??
[10]  10 Yu H, Mouw J K, Weaver V M. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol, 2011, 21: 47-56??
[11]  11 Binning G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930-933??
[12]  12 Martens J C, Radmacher M. Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch Eur J Physiol, 2008, 456: 95-100??
[13]  13 Li M, Liu L, Xi N, et al. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun, 2011, 404: 689-694??
[14]  14 Tao N J, Lindsay S M, Lees S. Measuring the microelastic properties of biological material. Biophys J, 1992, 63: 1165-1169??
[15]  15 Radmacher M, Monika F, Hansma P K. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J, 1995, 69: 264-270??
[16]  16 Hoh J H, Schoenenberger C A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microsocopy. J Cell Sci, 1994, 107: 1105-1114
[17]  17 Radmacher M, Fritz M, Kacher C M, et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J, 1996, 79: 556-567
[18]  18 Cuerrier C M, Gagner A, Lebel R, et al. Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit, 2009, 22: 389-396??
[19]  19 Pelling A E, Veraitch F S, Chu C P K, et al. Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskeleton, 2009, 66: 409-422??
[20]  20 Oberleithner H, Callies C, Kusche-Vihrog K, et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA, 2009, 106: 2829-2834??
[21]  21 Nikkhah M, Strobl J S, Schmelz E M, et al. Evaluation of the influence of growth medium composition on cell elasticity. J Biomech, 2011, 44: 762-766??
[22]  22 高英茂, 徐昌芬. 组织学与胚胎学. 北京: 人民卫生出版社, 2001. 64-65
[23]  23 Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep, 2005, 59: 1-152??
[24]  24 Merkel R, Nassoy P, Leung A, et al. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 1999, 397: 50-53??
[25]  25 李密, 刘连庆, 席宁, 等. 基于AFM的淋巴瘤细胞成像及其机械特性测定. 科学通报, 2010, 55: 2188-2196
[26]  26 Li M, Liu L, Xi N, et al. Drug-induced changes of topography and elasticity in living B lymphoma cells based on atomic force microscopy. Acta Phys Chim Sin, 2012, 28: 1502-1508
[27]  27 Nikkhah M, Strobl J S, Vita R D, et al. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures. Biomaterials, 2010, 31: 4552-4561??
[28]  28 Leporatti S, Gerth A, Kohler G, et al. Elasticity and adhesion of resting and lipoplysaccharide-stimulated macrophages. FEBS Lett, 2006, 580: 450-454??
[29]  29 Dave S S, Fu K, Wright G W, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med, 2006, 354: 2431-2442??
[30]  30 Diamandidou E, Cohen P R, Kurzrock R. Mycosis fungoides and sezary syndrome. Blood, 1996, 88: 2385-2409
[31]  31 Deininger M W N, Goldman J M, Melo J V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96: 3343-3356
[32]  32 Lee G Y H, Lim C T. Biomechanics approaches to studying human diseases. Trends Biotechnol, 2007, 25: 111-118??
[33]  33 Jin H, Pi J, Huang X, et al. BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol, 2012, 93: 1715-1723??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133