全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肌肉运动单元数量与sEMG非高斯/非线性水平关系的仿真研究

, PP. 926-934

Keywords: 仿真sEMG模型,高阶谱统计,运动单元,发放率,高斯性检验,线性检验

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来的研究证明,表面肌电信号具有非高斯与非线性的属性.随着施力水平增加,肌肉运动单元募集数量和发放率相应增加.因此,提出一个假设:sEMG信号的非高斯性和非线性水平与肌肉运动单元募集数量以及发放率相关.该假设只在实验性研究中被讨论过.本文使用一个包含空间信息(运动单元募集)和时间信息(3种FRs)的仿真sEMG模型检验此假设.双频域的高阶谱统计方法检验仿真sEMG信号的非高斯和非线性水平.采用多因素分析法对肌肉的nMUs及FR进行分析,查找这两个因素对sEMG非高斯和非线性水平的影响程度.通过二元相关性检验衡量3种FRs情况下nMUs与sEMG非高斯水平的相关密切程度,以及nMUs与sEMG非线性水平的相关密切程度.结果显示,nMUs,FRs及nMUs与FRs之间的交互效应都会对sEMG的非高斯和非线性水平产生影响.nMUs分别与sEMG的非高斯、非线性水平之间存在负相关关系.即在3种FRs情况下,随着肌力的增加,nMUs增加,sEMG趋于高斯和线性分布.本研究有效地限制了实验的干扰因素对sEMG非高斯与非线性水平的影响,并定量地描述了实验不能直接反映的肌肉nMUs和FRs与非高斯性、非线性之间的关系.本实验结果对肌肉活动能力的评估和假肢控制的研究具有指导意义.

References

[1]  6 Zazula D. Experience with surface EMG decomposition using higher-order cumulants. In: Proceedings of Signal Processing 2001 of IEEE Workshop, Pozn?n, Poland, 2001, 19-24
[2]  7 Shahid S, Walker J, Lyons G M, et al. Application of higher order statistics techniques to EMG signals to characterize the motor unit action potential. IEEE Trans Biomed Eng, 2005, 52: 1195-1209??
[3]  8 Kaplanis P A, Pattichis C S, Hadjileontiadis L J, et al. Surface EMG analysis on normal subjects based on isometric voluntary contraction. J Electromyogr Kines, 2009, 19: 157-171??
[4]  9 Nazarpour K, Sharafat A R, Firoozabadi S M P. Application of higher order statistics to surface electromyogram signal classification. IEEE Trans Biomed Eng, 2007, 54: 1762-1769??
[5]  10 Naik G, kumar D. Evaluation of higher order statistics parametes for multi channel sEMG using different force levels. In: 33rd Annual International Conference of the IEEE. Boston, MA: Institute of Electrical and Electronics Engineering, 2011. 3869-3872
[6]  11 Hussain M S, Mamun M D. Effectiveness of the wavelet transform on the surface EMG to understand the muscle fatigue during walk. Meas Sci Rev, 2012, 12: 28-33??
[7]  12 Zhou P, Rymer W Z. Can standard surface EMG processing parameters be used to estimate motor unit global ?ring rate? J Neural Eng, 2004, 1: 99-110
[8]  13 Kernell D. Organized variability in the neuromuscular system: a survey of task-related adaptations. Arch Ital Biol, 1992, 130: 19-66
[9]  14 Staudenmann D, Roeleveld K, Stegeman D F, et al. Methodological aspects of sEMG recordings for force estimation--A tutorial and review. J Electromyogr Kines, 2009, 20: 375-387
[10]  15 Turker K S, Miles T S. Cross-talk from other muscles can contaminate EMG signals in reflex studies of the human leg. Neurosci Lett, 1990, 111: 164-169??
[11]  16 Wang W, Stefano A D, Allen R. A simulation model of the surface EMG signal for analysis of muscle activity during the gait cyle. Comput Biol Med, 2006, 36: 601-618??
[12]  17 Gabriel D A, Kamen G. Experimental and modeling investigation of spectral compression of biceps brachii SEMG activity with increasing force levels. J Electromyogr Kines, 2009, 19: 437-448??
[13]  18 Duchêne J, Hogrel J Y. A model of EMG generation. IEEE Trans Biomed Eng, 2000, 47: 192-201??
[14]  19 Fuglevand A J, Winter D A, Patla A E. Models of recuitment and rate coding organization in motor-unit pools. J Neurophysiol, 1993, 70: 2470-2488
[15]  20 McGill K C. Surface electromyogram signal modelling. Med Biol Eng Comput, 2004, 42: 446-454??
[16]  21 Nandedkar S D, St?lberg E. Simulation of sigle fiber action potentials. Med Biol Eng Comput, 1983, 21: 158-165??
[17]  22 LorentedeNó R. Analysis of the distribution of action currents of nerve in volume conductors. Stud Rockfeller Inst Med Res, 1974, 132: 384-477
[18]  24 Andreassen S, Rosenfalck A. Relation of intracellular and extracellular action potentials of skeletal muscle fibers OCR. Crit Rev Biomed Eng, 1981, 6: 267-306
[19]  25 Sigl J C, Chamoun N C. An introduction to bispectral analysis for the Electroencephalogram. J Clin Monit, 1994, 10: 392-404??
[20]  26 Zhou Q X, Chen Y H, Ma C, et al. Evaluation of upper limb muscle fatigue based on surface electromyography. Sci China Tech Sci, 2011, 54: 939-944
[21]  27 DeLuca C J, LeFever R S, McCue M P, et al. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol, 1982, 329: 113-128
[22]  23 Zhou P, Rymer W Z. Factor governing the form of the relation between muscle force and the EMG: a simulation study. J Neurophysiol, 2004, 92: 2878-2886??
[23]  1 Buchthal F, Erminio F, Rosenfalck P. Motor unit territory in different human muscles. Acta Physiol Scand, 1959, 45: 72-87??
[24]  2 Merletti R, Rainoldi A, Farina D. Electromyography: physiology, engineering and noninvasive application. Merletti R, Parker P, eds. New Jersey: John Wiley & Sons, 2004
[25]  3 Merletti R, Roy S H, Kupa E, et al. Modeling of Surface Myoelectric Signals—Part II: Model-Based Signal Interpretation. IEEE Trans Biomed Eng, 1999, 46: 821-829??
[26]  4 Day S J, Hulliger M. Experimental simulation of cat electromyogram: evidence for algebraic summation of motor-unit action-potential trains. J Neurophysiol, 2001, 86: 2144-2158
[27]  5 Bilodeau M, Cincera M, Arsenault A B, et al. Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions. J Electromyogr Kines, 1997, 7: 87-96??
[28]  28 Henneman E. Relation between size of neurons and their susceptibility to discharge. Science, 1957, 126: 1345-1347??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133