5 O’Neill P M, Searle N L, Kan K W, et al. Novel, potent, semisynthetic antimalarial carba analogues of the first-generation 1,2,4-trioxane artemether. J Med Chem, 1999, 42: 5487-5493
[4]
6 Posner G H, Parker M H, Northrop J, et al. Orally active, hydrolytically stable, semisynthetic, antimalarial trioxanes in the artemisinin family. J Med Chem, 1999, 42: 300-304??
[5]
7 Ma J, Weiss E, Kyle D E, et al. Acid catalyzed Michael additions to artemisitene. Bioorg Med Chem Lett, 2000, 10: 1601-1603??
[6]
8 O’Neill P M, Rawe S L, Borstnik K, et al. Enantiomeric 1, 2, 4-trioxanes display equivalent in vitro antimalarial activity versus Plasmodium falciparum malaria parasites: implications for the molecular mechanism of action of the artemisinins. Chem Bio Chem, 2005, 6: 2048-2054
[7]
9 Liu Y, Cui K, Lu W, et al. Synthesis and antimalarial activity of novel dihydro-artemisinin derivatives. Molecules (Basel, Switzerland),2011, 16: 4527-4538??
[8]
10 Vennerstrom J L, Arbe-Barnes S, Brun R, et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature,2004, 430: 900-904??
[9]
11 Meshnick S R, Yang Y Z, Lima V, et al. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother, 1993, 37: 1108-1114
[10]
12 Eckstein-Ludwig U, Webb R J, Van Goethem I D, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature, 2003, 424:957-961??
[11]
13 Wu Y, Yue Z Y, Wu Y L. Interaction of qinghaosu (artemisinin) with cysteine sulfhydryl mediated by traces of non-heme iron. Angew Chem Int Ed Engl, 1999, 38: 2580-2582??
[12]
14 Posner G H, Oh C H, Wang D, et al. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J Med Chem, 1994, 37: 1256-1258
[13]
15 Butler A R, Gilbert B C, Hulme P, et al. EPR evidence for the involvement of free radicals in the iron-catalysed decomposition of qinghaosu (artemisinin) and some derivatives; antimalarial action of some polycyclic endoperoxides. Free Radical Res, 1998, 28: 471-476??
[14]
16 Jefford C W, Vicente M G H, Jacquier Y, et al. The Deoxygenation and isomerization of artemisinin and artemether and their relevance to antimalarial action. Helv Chim Acta, 1996, 79: 1475-1487??
[15]
17 Haynes R K, Chan W C, Lung C M, et al. The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. Chem Med Chem, 2007, 2: 1480-1497
[16]
18 O’Neill P M, Bishop L P, Searle N L, et al. Biomimetic Fe(II)-mediated degradation of arteflene (Ro-42-1611). The first EPR spin-trapping evidence for the previously postulated secondary carbon-centered cyclohexyl radical. J Org Chem, 2000, 65: 1578-1582??
[17]
19 Haynes R K, Vonwiller S C. The behaviour of qinghaosu (artemisinin) in the presence of non-heme iron(II) and (III). Tetrahedron Lett,1996, 37: 257-260??
[18]
20 Wu W M, Wu Y k, Wu Y L, et al. Unified mechanistic framework for the Fe(II)-induced cleavage of Qinghaosu and derivatives/analogues. The first spin-trapping evidence for the previously postulated secondary C-4 radical. J Am Chem Soc, 1998, 120: 3316-3325
[19]
21 Golenser J, Domb A, Leshem B, et al. Iron chelators as drugs against malaria pose a potential risk. Redox Rep, 2003, 8: 268-271??
[20]
22 Hong Y L, Yang Y Z, Meshnick S R. The interaction of artemisinin with malarial hemozoin. Mol Biochem Parasitol, 1994, 63: 121-128??
[21]
23 Efferth T. Willmar schwabe award 2006: antiplasmodial and antitumor activity of artemisinin—from bench to bedside. Planta Med, 2007,73: 299-309
[22]
24 Meshnick S R, Thomas A, Ranz A, et al. Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol, 1991, 49: 181-189??
[23]
25 Li W, Mo W, Shen D, et al. Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet, 2005, 1: e36??
27 Haynes R K, Ho W Y, Chan H W, et al. Highly antimalaria-active artemisinin derivatives: biological activity does not correlate with chemical reactivity. Angew Chem Int Ed Engl, 2004, 43: 1381-1385??
[26]
28 Klonis N, Crespo-Ortiz M P, Bottova I, et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci USA, 2011, 108: 11405-11410??
[27]
29 Krungkrai S R, Yuthavong Y. The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans R Soc Trop Med Hyg, 1987, 81: 710-714??
[28]
30 Levander O A, Ager A L Jr, Morris V C, et al. Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii. Am J Clin Nutr, 1989, 50: 346-352
[29]
31 Senok A C, Nelson E A, Li K, et al. Thalassaemia trait, red blood cell age and oxidant stress: effect on Plasmodium falciparum growth and sensitivity to artemisinin. Trans R Soc Trop Med Hyg, 1997, 91: 585-589??
[30]
32 Scott M D, Meshnick S R, Williams R A, et al. Qinghaosu-mediated oxidation in normal and abnormal erythrocytes. J Lab Clin Med, 1989,114: 401-406
[31]
1 World Health Organization. World Malaria Report: 2011. XI. Switzerland: WHO Press, 2011??
[32]
2 Dondorp A M, Nosten F, Yi P, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med, 2009, 361: 455-467??
[33]
33 Berman P A, Adams P A. Artemisinin enhances heme-catalysed oxidation of lipid membranes. Free Radic Biol Med, 1997, 22: 1283-1288??
[34]
66 Wang D Y, Wu Y L. A possible antimalarial action mode of qinghaosu (artemisinin) series compounds. Alkylation of reduced glutathione by C-centered primary radicals produced from antimalarial compound qinghaosu and 12-(2,4-dimethoxyphenyl)-12-deoxoqinghaosu. Chem Commun, 2000, 2193-2194
[35]
67 Efferth T, Dunstan H, Sauerbrey A, et al. The anti-malarial artesunate is also active against cancer. Int J Oncol, 2001, 18: 767-773
[36]
68 Gao N, Budhraja A, Cheng S, et al. Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo. Apoptosis, 2011, 16: 511-523??
[37]
69 Efferth T, Olbrich A, Bauer R. mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether. Biochem Pharmacol, 2002, 64: 617-623??
[38]
70 Zhao Y, Jiang W, Li B, et al. Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol, 2011, 11: 2039-2046??
[39]
71 Noori S, Hassan Z M. Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol, 2011, 271: 67-72??
[40]
72 Zhou H J, Wang W Q, Wu G D, et al. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol, 2007, 47: 131-138??
[41]
73 Efferth T, Benakis A, Romero M R, et al. Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radic Biol Med, 2004, 37: 998-1009??
[42]
74 Lai H, Sasaki T, Singh N P, et al. Effects of artemisinin-tagged holotransferrin on cancer cells. Life Sci, 2005, 76: 1267-1279??
[43]
75 Zhang S, Gerhard G S. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One, 2009, 4: e7472??
[44]
76 Mercer A E, Copple I M, Maggs J L, et al. The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem, 2011, 286: 987-996??
[45]
34 Robert A, Coppel Y, Meunier B. Alkylation of heme by the antimalarial drug artemisinin. Chem Commun(Camb), 2002: 414-415
[46]
35 Pandey A V, Tekwani B L, Singh R L, et al. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem, 1999, 274: 19383-19388??
[47]
36 Kannan R, Kumar K, Sahal D, et al. Reaction of artemisinin with haemoglobin: implications for antimalarial activity. Biochem J, 2005, 385:409-418??
[48]
37 Robert A, Benoit-Vical F, Claparols C, et al. The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA,2005, 102: 13676-13680??
[49]
38 Meunier B, Robert A. Heme as trigger and target for trioxane-containing antimalarial drugs. Acc Chem Res, 2010, 43: 1444-1451??
[50]
39 Kannan R, Sahal D, Chauhan V S. Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem Biol, 2002, 9: 321-332??
[51]
40 Loup C, Lelievre J, Benoit-Vical F, et al. Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine. Antimicrob Agents Chemother, 2007, 51: 3768-3770??
[52]
41 Cazelles J, Robert A, Meunier B. Alkylating capacity and reaction products of antimalarial trioxanes after activation by a heme model. J Org Chem, 2002, 67: 609-619??
[53]
42 Asawamahasakda W, Ittarat I, Chang C C, et al. Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. Mol Biochem Parasitol, 1994, 67: 183-191??
[54]
43 Haynes R K, Monti D, Taramelli D, et al. Artemisinin antimalarials do not inhibit hemozoin formation. Antimicrob Agents Chemother,2003, 47: 1175??
[55]
44 Coghi P, Basilico N, Taramelli D, et al. Interaction of artemisinins with oxyhemoglobin Hb-FeII, Hb-FeII, carboxyHb-FeII, heme-FeII, and carboxyheme FeII: significance for mode of action and implications for therapy of cerebral malaria. Chem Med Chem, 2009, 4: 2045-2053
[56]
45 Meshnick S R. Artemisinin and heme. Antimicrob Agents Chemother, 2003, 47: 2712; author reply 2712-2713??
[57]
46 Uhlemann A C, Cameron A, Eckstein-Ludwig U, et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol, 2005, 12: 628-629??
[58]
47 Garah F B, Stigliani J L, Cosledan F, et al. Docking studies of structurally diverse antimalarial drugs targeting PfATP6: no correlation between in silico binding affinity and in vitro antimalarial activity. Chem Med Chem, 2009, 4: 1469-1479
[59]
48 Jambou R, Legrand E, Niang M, et al. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet, 2005, 366: 1960-1963??
[60]
49 Cojean S, Hubert V, Le Bras J, et al. Resistance to dihydroartemisinin. Emerg Infect Dis, 2006, 12: 1798-1799??
[61]
50 Jefford C W. New developments in synthetic peroxidic drugs as artemisinin mimics. Drug Discov Today, 2007, 12: 487-495??
[62]
51 Valderramos S G, Scanfeld D, Uhlemann A C, et al. Investigations into the role of the Plasmodium falciparum SERCA (PfATP6) L263E mutation in artemisinin action and resistance. Antimicrob Agents Chemother, 2010, 54: 3842-3852??
[63]
52 Cui L, Wang Z, Jiang H, et al. Lack of association of the S769N mutation in plasmodium falciparum SERCA (PfATP6) with resistance to artemisinins. Antimicrob Agents Chemother, 2012, 56: 2546-2552??
[64]
53 Cardi D, Pozza A, Arnou B, et al. Purified E255L mutant SERCA1a and purified PfATP6 are sensitive to SERCA-type inhibitors but insensitive to artemisinins. J Biol Chem, 2010, 285: 26406-26416??
[65]
54 Arnou B, Montigny C, Morth J P, et al. The Plasmodium falciparum Ca(2+)-ATPase PfATP6: insensitive to artemisinin, but a potential drug target. Biochem Soc Trans, 2011, 39: 823-831
[66]
55 Kamugisha E, Jing S, Minde M, et al. Efficacy of artemether-lumefantrine in treatment of malaria among under-fives and prevalence of drug resistance markers in Igombe-Mwanza, north-western Tanzania. Malar J, 2012, 11: 58??
57 Srivastava I K, Rottenberg H, Vaidya A B. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem, 1997, 272: 3961-3966??
[69]
58 Wang J, Huang L, Li J, et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One,2010, 5: e9582??
60 del Pilar Crespo M, Avery T D, Hanssen E, et al. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother, 2008, 52: 98-109??
[72]
61 Afonso A, Hunt P, Cheesman S, et al. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother, 2006, 50:480-489
[73]
62 Ellis D S, Li Z L, Gu H M, et al. The chemotherapy of rodent malaria, XXXIX. Ultrastructural changes following treatment with artemisinine of Plasmodium berghei infection in mice, with observations of the localization of
[74]
[3H]-dihydroartemisinine in P. falciparum in vitro. Ann Trop Med Parasit, 1985, 79: 367-374
[75]
63 Maeno Y, Toyoshima T, Fujioka H, et al. Morphologic effects of artemisinin in Plasmodium falciparum. Am J Trop Med Hyg, 1993, 49:485-491
[76]
64 Kawai S, Kano S, Suzuki M. Morphologic effects of artemether on Plasmodium falciparum in Aotus trivirgatus. Am J Trop Med Hyg, 1993,49: 812-818
[77]
65 Linares G E, Rodriguez J B. Current status and progresses made in malaria chemotherapy. Curr Med Chem, 14: 289-314