全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

类金刚石膜和不同氮含量碳氮膜的血液相容性比较

, PP. 333-339

Keywords: 碳氮膜,类金刚石膜,磁控溅射,原子含量百分比,血液相容性

Full-Text   Cite this paper   Add to My Lib

Abstract:

室温条件下,采用直流磁控溅射方法在单晶Si表面沉积碳氮(CNx)和类金刚石(DLC)薄膜,并通过改变氮气分压合成出不同氮含量的CNx薄膜.俄歇电子能谱(AES)结果显示,两种CNx膜中氮和碳含量的原子百分比分别为0.12和0.22.原子力显微镜(AFM)观察发现,CNx薄膜表面粗糙度小于DLC薄膜,且含氮量越高,CNx膜表面越光滑.3种材料的体外血液接触实验表明,CNx膜的血液相容性整体优于DLC薄膜,并且氮和碳含量的原子百分比为0.22的CNx膜的血液相容性最好,它比含氮量低的CNx膜表现出更长的动态凝血时间(42min)、静态凝血时间(23.6min)、覆钙时间(45.6s)和更低的血小板黏附量(102细胞/μm2).结果表明,加入N元素有利于提高碳薄膜的血液相容性.

References

[1]  6 Pandiyaraj K N, Selvarajan V, Heeg J, et al. Influence of bias voltage on diamond like carbon (DLC) film deposited on polyethylene terephthalate (PET) film surfaces using PECVD and its blood compatibility. Dia Rel Mater, 2010, 19: 1085-1092??
[2]  7 Dearnaley G, Arps J H. Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surf Coat Technol, 2005, 200:2518-2524??
[3]  8 Maa W J, Ruysa A J, Masonb R S, et al. Use of diamond-like carbon with tungsten (W-DLC) films as biocompatible material. Biomaterials,2007, 28: 1620-1628??
[4]  9 Lousinian S, Logothetidis S, Laskarakis A, et al. Haemocompatibility of amorphous hydrogenated carbon thin films, optical properties and adsorption mechanisms of blood plasma proteins. Biomol Eng, 2007, 24: 107-112??
[5]  10 Uzumaki E T, Lambert C S, Santos A R, et al. Surface properties and cell behaviour of diamond-like carbon coatings produced by plasma immersion. Thin Solid Films, 2006, 515: 293-300??
[6]  11 Allen M, Myer B, Rushton N. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J Biomed Mater Res, 2001, 58: 319-328??
[7]  12 Cui F Z, Qing X L, Li D J, et al. Biomedical investigations on CNx coating. Surf Coat Technol, 2005, 200: 1009-1013??
[8]  13 Jones M I, McColl I R, Grant D M, et al Structure and properties of annealed amorphous hydrogenated carbon (a-C: H) films for biomedical applications. Dia Rel Mater, 1999, 8: 457-462
[9]  14 Bendavid A, Martin P J, Comte C, et al. The mechanical and biocompatibility properties of DLC-Si films prepared by pulsed DC plasma activated chemical vapor deposition. Dia Rel Mater, 2007, 16: 1616-1622??
[10]  15 Marton M, Zdravecka E, Vojs M, et al. Study of adhesion of carbon nitride thin films on medical alloy substrates. Vacuum, 2010, 84: 65-67
[11]  16 Rossi F, Andre B, Van Veen A, et al. Physical properties of nitrogenated amorphous carbon films produced by ion-beam-assisted deposition. Thin Solid Films, 1994, 253: 85-89??
[12]  17 Yu L J, Wang X, Wang X H, et al. Haemocompatibility of tetrahedral amorphous carbon films. Surf Coat Technol, 2000, 128-129: 484-488
[13]  18 Zheng C L, Cui F Z, Meng B, et al. Hemocompatibility of C-N films fabricated by ion beam assisted deposition. Surf Coat Technol, 2005,193: 361-365??
[14]  19 Li D J, Guruz M U, Bhatia C S, et al. Ultrathin CNx overcoats for 1 Tb/in.2 hard disk drive systems. Appl Phys Lett, 2002, 81: 1113-1115
[15]  20 Milojka G, Gerhard S, Wolfgang G, et al. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf A: Physicochemical and Engineering Aspects, 2001, 181: 279-287??
[16]  21 Dynes P J, Kaelble D H. Surface energy analysis of carbon fibers and films. J Adhes, 1974, 6: 195-199??
[17]  22 Laura J S, Jennifer L W, Antonios G M. Platelet adhesion on a bioresorbable poly (propylene fumarate-co-ethylene glycol) copolymer. Biomaterials, 1999, 20: 683-690??
[18]  23 Ivarsson B, Lundstrom I. Physical characterization of protein adsorption on metal and metaloxide surfaces. CRC Crit Rev Biocompat, 1986,2: 1-96
[19]  24 Baier R E. Conditioning surfaces to suit the biom dical environment. J Biomech Eng, 1982, 104: 257-260??
[20]  25 Baurschmidt P, Schaldach M. Alloplastic materials for heart-valve prostheses. Med Biol Eng Comput, 1980, 18: 496-502??
[21]  26 Zhang L, Chen M, Li Z Y, et al. Effect of annealing on structure and haemocompatibility of tetrahedral amorphous hydrogenated carbon films. Mater Lett, 2008, 62: 1040-1043??
[22]  27 Titantah J T, Lamoen D. Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Dia Rel Mate., 2007, 16: 581-588??
[23]  28 Hultman L, Neidhardt J, Hellgren N, et al. Fullerene-like carbon nitride: A resilient coating material. MRS Bull, 2003, 28: 194-202??
[24]  29 Ferrari A C, Kleinsorge B, Morrison N A, et al. Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J Appl Phys, 1999, 85: 7191-7197??
[25]  1 Ruckenstein E, Gourisankar SV. Preparation and characterization of thin film surface coatings for biological environments. Biomaterials,1986, 7: 403-422??
[26]  2 Jelinek M, Smetana K, Kocoureka T, et al. Biocompatibility and sp3/sp2 ratio of laser created DLC films. Mater Sci Eng B, 2010, 169:89-93??
[27]  3 Yang P, Huang N, Leng Y X, et al. Activation of platelets adhered on amorphous hydrogenated carbon (a-C: H) films synthesized by plasma immersion ion implantation-deposition (PIII-D). Biomaterials, 2003, 24: 2821-2829??
[28]  5 Bharathy P V, Nataraj D, Chu P K, et al. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method. Appl Surf Sci, 2010, 257: 143-150??
[29]  4 Salgueiredo E, Vila M, Silva M A, et al. Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applications. Dia Rel Mater, 2008, 17: 878-881??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133