全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

啄木鸟颅骨及颌骨的材料学特征在头部抗冲击性中的作用

, PP. 234-239

Keywords: 啄木鸟,头部,骨微观结构,成分组成,力学特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

啄木鸟以6~7m/s,加速度约10000×g进行啄木,却不会发生头部冲击性损伤,迄今为止对其生物力学机制尚不明确.本文从材料学角度定量化分析了大斑啄木鸟和蒙古百灵鸟的颅骨及颌骨的骨微观结构、成分组成及材料力学特性,希望从中找出啄木鸟头部骨材料特征对其抗冲击性的作用.利用高分辨率Micro-CT系统和扫描电子显微镜观察了大斑啄木鸟和蒙古百灵鸟的颅骨及颌骨的骨微观结构;利用粉末X射线衍射仪和傅立叶变换红外光谱仪测定了它们的成分组成;利用材料力学试验机测量了材料力学特性.结果表明,大斑啄木鸟具有独特的骨微观结构、成分组成及力学特性,它在长期啄木过程中适应了高频、高加速度冲击环境,并且其头部骨微观结构和力学性能达到了最优化设计.本研究提示,啄木鸟骨材料学特征的特殊性在其头部抗冲击性中发挥了重要作用,为抗冲击性仿生材料的设计提供了线索.

References

[1]  1 Lee K S. Estimation of the incidence of head injury in Korea: an approximation based on national traffic accident statistics. J Korean Med Sci, 2001, 16: 342–346
[2]  2 Rosenfeld J V, McDermott F T, Laidlaw J D, et al. The preventability of death in road traffic fatalities with head injury in Victoria, Australia. J Clin Neurosci, 2000, 7: 507–514??
[3]  3 May P R, Fuster J M, Haber J, et al. Woodpecker drilling behavior--an endorsement of the rotational theory of impact brain injury. Arch Neurol-Chicago, 1979, 36: 370–373??
[4]  4 Darwin C. The Origin of Species by Means of Natural Selection. 6th ed. London: Senate, 1872
[5]  5 Sielmann H. My Year with the Woodpeckers. London: Barrier and Rockliff, 1959. 139
[6]  6 Gibson L J. Woodpecker pecking: how woodpeckers avoid brain injury. J Zool, 2006, 270: 462–465??
[7]  7 Oda J, Sakamoto J, Sakano K. Mechanical evaluation of the skeletal structure and tissue of the woodpecker and its shock absorbing system. JSME Int J Ser A, 2006, 49: 390–396??
[8]  8 May P R, Fuster J M, Newman P, et al. Woodpeckers and head injury. Lancet, 1976, 1: 454–455
[9]  9 Wang L, Cheung J T, Pu F, et al. Why do woodpeckers resist head impact injury: a biomechanical investigation. PLoS ONE, 2011, 6: e26490??
[10]  10 Rubner M. Materials science: synthetic sea shell. Nature, 2003, 423: 925–926??
[11]  11 Bock W J. An Approach to the funcitional analysis of bill shape. Auk, 1966, 83: 10–51
[12]  12 Degrange F J, Tambussi C P, Moreno K, et al. Mechanical analysis of feeding behavior in the extinct “terror bird” Andalgalornis steulleti (Gruiformes: Phorusrhacidae). PLoS ONE, 2010, 5: e11856??
[13]  13 Herrel A, Podos J, Huber S K, et al. Evolution of bite force in Darwin''s finches: a key role for head width. J Evol Biol, 2005, 18: 669–675??
[14]  14 Carter D R, Fyhrie D P, Whalen R T. Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J Biomech, 1987, 20: 785–794??
[15]  15 Cowin S C. Wollff''s law of trabecular bone architecture at remodeling equilibrium. J Biomech Eng, 1986, 108: 83–88??
[16]  16 Lanyon L E. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone, 1996, 18: S37–S43??
[17]  17 Roesler H. The history of some fundamental concepts in bone biomechanics. J Biomech, 1987, 20: 1025–1034??
[18]  18 Ruimerman R, Huiskes R, Van Lenthe G H, et al. A computer-simulation model relating bone-cell metabolism to mechanical adaptation of trabecular architecture. Comput Method Biomec, 2001, 4: 433–448??
[19]  19 Linde F, Gothgen C B, Hvid I, et al. Mechanical properties of trabecular bone by a nondestructive compression testing approach. Eng Med,1988, 17: 23–29??
[20]  20 Van Eijden T M G J, Giesen E B W, Ding M, et al. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech, 2001, 34: 799–803??
[21]  21 Kandori K, Horigami N, Yasukawa A, et al. Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of calcium-edta chelates. J Am Ceram Soc, 1997, 80: 1157–1164
[22]  22 Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res,2002, 62: 600–612??
[23]  23 Wolff J. The classic: on the significance of the architecture of the spongy substance for the question of bone growth: a preliminary publication. Clin Orthop Relat R, 2011, 469: 3077–3078??
[24]  24 Wolff J. The classic on the inner architecture of bones and its importance for bone growth. Clin Orthop Relat R, 2010, 468: 1056–1065??
[25]  25 Liu X S, Sajda P, Saha P K, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res, 2008, 23: 223–235
[26]  26 Müller R. Hierarchical microimaging of bone structure and function. Nature Review Rheumatol, 2009, 5: 373–381??
[27]  27 Ulrich D, Van Rietbergen B, Laib A, et al. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone, 1999, 25: 55–60??
[28]  28 Ding M, Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone, 2000, 26: 291–295??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133