全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

病毒诱导的基因沉默及其在植物功能基因组研究中的应用

, PP. 3-15

Keywords: 病毒诱导的基因沉默,基因功能,基因表达

Full-Text   Cite this paper   Add to My Lib

Abstract:

病毒诱导的基因沉默已成为研究植物功能基因组的重要工具.VIGS体系因其方法简便、周期性短以及避免植物转化等诸多优点,已在利用正向遗传学和反向遗传学寻找和鉴定基因功能方面发挥了日益重要的作用.越来越多的植物病毒被改造成为VIGS载体,并已在植物发育、生物逆境、非生物逆境、细胞代谢、信号传导等基因功能研究方面得到了应用.本文围绕VIGS的发展以及在植物功能基因鉴定中的应用及前景提出了展望.

References

[1]  1 Matthew L. RNAi for plant functional genomics. Comp Funct Genomics, 2004, 5: 240-244??
[2]  2 Baulcombe D C. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol, 1999, 2: 109-113??
[3]  3 Burch-Smith T M, Anderson J C, Martin G B, et al. Applications and advantages of virus-induced gene silencing for gene function studies inplants. Plant J, 2004, 39: 734-746??
[4]  4 Robertson D. VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol, 2004, 55: 495-519??
[5]  5 Becker A, Lange M. VIGS--genomics goes functional. Trends Plant Sci, 2010, 15: 1-4??
[6]  6 Purkayastha A, Dasgupta I. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem,2009, 47: 967-976??
[7]  7 vanKammen A. Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci, 1997, 2: 409-411??
[8]  65 Golenberg E M, Sather D N, Hancock L C, et al. Development of a gene silencing DNA vector derived from a broad host range geminivirus.Plant Methods, 2009, 5: 9??
[9]  66 Turnage M A, Muangsan N, Peele C G, et al. Geminivirus-based vectors for gene silencing in Arabidopsis. Plant J, 2002, 30: 107-114??
[10]  67 Muruganantham M, Moskovitz Y, Haviv S, et al. Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. JVirol Methods, 2009, 155: 167-174
[11]  68 del Rosario Abraham-Juarez M, del Carmen Rocha-Granados M, Lopez M G, et al. Virus-induced silencing of Comt, pAmt and Kas genesresults in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta, 2008, 227: 681-695??
[12]  69 Purkayastha A, Mathur S, Verma V, et al. Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta, 2010, 232:1531-1540??
[13]  70 Carrillo-Tripp J, Shimada-Beltran H, Rivera-Bustamante R. Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol, 2006,9: 209-215??
[14]  71 Pandey P, Choudhury N R, Mukherjee S K. A geminiviral amplicon (VA) derived from Tomato leaf curl virus (ToLCV) can replicate in awide variety of plant species and also acts as a VIGS vector. Virol J, 2009, 6: 152??
[15]  72 Qian Y, Mugiira R B, Zhou X. A modified viral satellite DNA-based gene silencing vector is effective in association with heterologousbegomoviruses. Virus Res, 2006, 118: 136-142??
[16]  73 Lacomme C, Hrubikova K, Hein I. Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J,2003, 34: 543-553??
[17]  74 Xu P, Zhang Y, Kang L, et al. Computational estimation and experimental verification of off-target silencing during posttranscriptional genesilencing in plants. Plant Physiol, 2006, 142: 429-440??
[18]  75 Jacob S S, Vanitharani R, Karthikeyan A S, et al. Mungbean yellow mosaic virus-Vi agroinfection by codelivery of DNA A and DNA Bfrom one Agrobacterium strain. Plant Dis, 2003, 87: 247-251??
[19]  76 Orzaez D, Mirabel S, Wieland W H, et al. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit.Plant Physiol, 2006, 140: 3-11
[20]  77 Jaakola L, Poole M, Jones M O, et al. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol, 2010, 153: 1619-1629??
[21]  78 Chai Y M, Jia H F, Li C L, et al. FaPYR1 is involved in strawberry fruit ripening. J Exp Bot, 2011
[22]  79 Romero I, Tikunov Y, Bovy A. Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase genesilencing. J Plant Physiol, 2011, 168: 1129-1135??
[23]  80 Liu Y, Schiff M, Dinesh-Kumar S P. Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 inN-mediated resistance to tobacco mosaic virus. Plant J, 2004, 38: 800-809
[24]  81 Peart J R, Cook G, Feys B J, et al. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J, 2002, 29:569-579??
[25]  82 Peart J R, Mestre P, Lu R, et al. NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobaccomosaic virus. Curr Biol, 2005, 15: 968-973??
[26]  83 Zhu X, Caplan J, Mamillapalli P, et al. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed celldeath. Embo J, 2010, 29: 1007-1018??
[27]  84 Caplan J L, Mamillapalli P, Burch-Smith T M, et al. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viraleffector. Cell, 2008, 132: 449-462??
[28]  85 Liu Y, Schiff M, Czymmek K, et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121:567-577??
[29]  86 Tameling W I, Baulcombe D C. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is requiredfor extreme resistance to Potato virus X. Plant Cell, 2007, 19: 1682-1694??
[30]  87 Jaag H M, Pogany J, Nagy P D. A host Ca2+/Mn2+ ion pump is a factor in the emergence of viral RNA recombinants. Cell Host Microbe,2010, 7: 74-81??
[31]  88 Barajas D, Nagy P D. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23pESCRT protein. Virology, 2010, 397: 358-368??
[32]  89 Wang R Y, Nagy P D. Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNAsynthesis. Cell Host Microbe, 2008, 3: 178-187??
[33]  90 Abbink T E, Peart J R, Mos T N, et al. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem IIenhances virus replication in plants. Virology, 2002, 295: 307-319??
[34]  91 Yoshii A, Shimizu T, Yoshida A, et al. NTH201, a novel class II KNOTTED1-like protein, facilitates the cell-to-cell movement of Tobaccomosaic virus in tobacco. Mol Plant Microbe Interact, 2008, 21: 586-596
[35]  92 Jin H, Li S, Villegas A Jr. Down-regulation of the 26S proteasome subunit RPN9 inhibits viral systemic transport and alters plant vasculardevelopment. Plant Physiol, 2006, 142: 651-661??
[36]  93 Gronlund M, Olsen A, Johansen E I, et al. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis inPisum sativum. Plant Methods, 2010, 6: 28??
[37]  94 Gabriels S H, Takken F L, Vossen J H, et al. CDNA-AFLP combined with functional analysis reveals novel genes involved in thehypersensitive response. Mol Plant Microbe Interact, 2006, 19: 567-576??
[38]  95 Gabriels S H, Vossen J H, Ekengren S K, et al. An NB-LRR protein required for HR signalling mediated by both extra- and intracellularresistance proteins. Plant J, 2007, 50: 14-28??
[39]  96 Rowland O, Ludwig A A, Merrick C J, et al. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, thatis essential for full Cf-9-dependent disease resistance in tomato. Plant Cell, 2005, 17: 295-310
[40]  97 Vossen J H, Abd-El-Haliem A, Fradin E F, et al. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) familymembers and the role of PLC4 and PLC6 in HR and disease resistance. Plant J, 2010, 62: 224-239??
[41]  98 Rivas S, Rougon-Cardoso A, Smoker M, et al. CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulatesdefence. Embo J, 2004, 23: 2156-2165??
[42]  99 Stulemeijer I J, Stratmann J W, Joosten M H. Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activatedduring the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol, 2007, 144: 1481-1494
[43]  100 Eichmann R, Bischof M, Weis C, et al. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol PlantMicrobe Interact, 2010, 23: 1217-1227?? 101 Hein I, Barciszewska-Pacak M, Hrubikova K, et al. Virus-induced gene silencing-based functional characterization of genes associated withpowdery mildew resistance in barley. Plant Physiol, 2005, 138: 2155-2164??
[44]  102 Cloutier S, McCallum B D, Loutre C, et al. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol, 2007, 65: 93-106
[45]  103 Xie W, Hao L, Goodwin P H. Role of a xyloglucan-specific endo-beta-1, 4-glucanase inhibitor in the interactions of Nicotiana benthamianawith Colletotrichum destructivum, C. orbiculare or Pseudomonas syringae pv. tabaci. Mol Plant Pathol, 2008, 9: 191-202
[46]  104 Borras-Hidalgo O, Thomma B P, Collazo C, et al. EIL2 transcription factor and glutathione synthetase are required for defense of tobaccoagainst tobacco blue mold. Mol Plant Microbe Interact, 2006, 19: 399-406??
[47]  105 Ekengren S K, Liu Y L, Schiff M, et al. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated diseaseresistance in tomato. Plant Journal, 2003, 36: 905-917
[48]  121 Lou Y, Baldwin I T. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol, 2006,140: 1126-1136??
[49]  122 Kandoth P K, Ranf S, Pancholi S S, et al. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defenseresponse against herbivorous insects. Proc Natl Acad Sci USA, 2007, 104: 12205-12210
[50]  123 Heinrich M, Baldwin I T, Wu J. Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialistlepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. J Exp Bot, 2011, 62: 4355-4365
[51]  124 Yang D H, Hettenhausen C, Baldwin I T, et al. BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinaseinhibitors in Nicotiana attenuata’s responses to herbivory. J Exp Bot, 2010, 62: 641-652
[52]  125 Senthil-Kumar M, Udayakumar M. High-throughput virus-induced gene-silencing approach to assess the functional relevance of a moisturestress-induced cDNA homologous to lea4. J Exp Bot, 2006, 57: 2291-2302??
[53]  126 Guo Y, Huang C, Xie Y, et al. A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta,2010, 232: 1499-1509??
[54]  127 Lee S C, Choi du S, Hwang I S, et al. The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol, 2010, 73: 409-424??
[55]  128 Ahn C S, Lee J H, Reum Hwang A, et al. Prohibitin is involved in mitochondrial biogenesis in plants. Plant J, 2006, 46: 658-667??
[56]  129 Re D A, Dezar C A, Chan R L, et al. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetoneemission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62: 155-166??
[57]  130 Senthil-Kumar M, Govind G, Kang L, et al. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-inducedgenes by virus-induced gene silencing. Planta, 2007, 225: 523-539??
[58]  131 Hands P, Vosnakis N, Betts D, et al. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions inopium poppy. Ann Bot, 2011, 107: 1557-1566??
[59]  132 Kramer E M, Holappa L, Gould B, et al. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicotAquilegia. Plant Cell, 2007, 19: 750-766??
[60]  136 Kang Y W, Kim R N, Cho H S, et al. Silencing of a BYPASS1 homolog results in root-independent pleiotrophic developmental defects inNicotiana benthamiana. Plant Mol Biol, 2008, 68: 423-437??
[61]  137 Bouvier F, Linka N, Isner J C, et al. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development.Plant Cell, 2006, 18: 3088-3105??
[62]  138 Park J A, Ahn J W, Kim Y K, et al. Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. PlantJ, 2005, 42: 153-163??
[63]  139 Valentine T, Shaw J, Blok V C, et al. Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. PlantPhysiol, 2004, 136: 3999-4009
[64]  140 Liu B, Watanabe S, Uchiyama T, et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1.Plant Physiol, 2010, 153: 198-210??
[65]  141 Burton R A, Gibeaut D M, Bacic A, et al. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell, 2000, 12: 691-706
[66]  142 Held M A, Penning B, Brandt A S, et al. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase genemodulate cell wall biosynthesis in barley. Proc Natl Acad Sci USA, 2008, 105: 20534-20539??
[67]  143 Stewart C Jr, Kang B C, Liu K, et al. The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J, 2005, 42: 675-688??
[68]  144 Ahn J W, Verma R, Kim M, et al. Depletion of UDP-D-apiose/UDP-D-xylose synthases results in rhamnogalacturonan-II deficiency, cellwall thickening, and cell death in higher plants. J Biol Chem, 2006, 281: 13708-13716??
[69]  145 Asai S, Mase K, Yoshioka H. A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production indisease resistance. Plant J, 2010, 62: 911-924
[70]  146 Anand A, Vaghchhipawala Z, Ryu C M, et al. Identification and characterization of plant genes involved in Agrobacterium-mediated planttransformation by virus-induced gene silencing. Mol Plant Microbe Interact, 2007, 20: 41-52??
[71]  147 Jones L, Keining T, Eamens A, et al. Virus-induced gene silencing of argonaute genes in Nicotiana benthamiana demonstrates that extensivesystemic silencing requires Argonaute1-like and Argonaute4-like genes. Plant Physiol, 2006, 141: 598-606??
[72]  148 Kim M, Lim J H, Ahn C S, et al. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotianabenthamiana. Plant Cell, 2006, 18: 2341-2355??
[73]  149 Kim Y K, Lee J Y, Cho H S, et al. Inactivation of organellar glutamyl- and seryl-tRNA synthetases leads to developmental arrest ofchloroplasts and mitochondria in higher plants. J Biol Chem, 2005, 280: 37098-37106??
[74]  150 Lin Z, Yin K, Wang X, et al. Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant PhysiolBiochem, 2007, 45: 87-94
[75]  151 Park Y J, Cho H K, Jung H J, et al. PRBP plays a role in plastid ribosomal RNA maturation and chloroplast biogenesis in Nicotianabenthamiana. Planta, 2011, 233: 1073-1085??
[76]  152 Ahn C S, Lee J H, Pai H S. Silencing of NbNAP1 encoding a plastidic SufB-like protein affects chloroplast development in Nicotianabenthamiana. Mol Cells, 2005, 20: 112-118
[77]  153 Cho H S, Lee S S, Kim K D, et al. DNA gyrase is involved in chloroplast nucleoid partitioning. Plant Cell, 2004, 16: 2665-2682??
[78]  154 Arsova B, Hoja U, Wimmelbacher M, et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner:evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell, 2010, 22: 1498-1515??
[79]  155 Jeon Y, Hwang A R, Hwang I, et al. Silencing of NbCEP1 encoding a chloroplast envelope protein containing 15 leucine-rich-repeatsdisrupts chloroplast biogenesis in Nicotiana benthamiana. Mol Cells, 2010, 29: 175-183??
[80]  156 Kang Y W, Lee J Y, Jeon Y, et al. In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana. Plant Mol Biol,2010, 72: 569-583??
[81]  157 Fan J, Quan S, Orth T, et al. The Arabidopsis PEX12 gene is required for peroxisome biogenesis and is essential for development. PlantPhysiol, 2005, 139: 231-239
[82]  158 Li R, Reed D W, Liu E, et al. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450involved in littorine rearrangement. Chem Biol, 2006, 13: 513-520??
[83]  159 Liscombe D K, O''Connor S E. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus.Phytochemistry, 2011, 72: 1969-1977??
[84]  160 Todd A T, Liu E, Polvi S L, et al. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis inNicotiana benthamiana. Plant J, 2010, 62: 589-600??
[85]  161 Page J E, Hause G, Raschke M, et al. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway toisoprenoids in plants using virus-induced gene silencing. Plant Physiol, 2004, 134: 1401-1413??
[86]  162 Ahn C S, Pai H S. Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cellmorphogenesis in Nicotiana benthamiana. Plant Mol Biol, 2008, 66: 503-517??
[87]  163 Qian W, Yu C, Qin H, et al. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence forthe involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J, 2007, 49: 399-413??
[88]  164 Darnet S, Rahier A. Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl oxidases. Biochem J, 2004, 378:889-898??
[89]  165 Park J A, Kim T W, Kim S K, et al. Silencing of NbECR encoding a putative enoyl-CoA reductase results in disorganized membranestructures and epidermal cell ablation in Nicotiana benthamiana. Febs Lett, 2005, 579: 4459-4464??
[90]  167 Lacorte C, Ribeiro S G, Lohuis D, et al. Potatovirus X and Tobacco mosaic virus-based vectors compatible with the gateway cloning system.J Virol Methods, 2010, 164: 7-13??
[91]  166 Tang Y, Wang F, Zhao J, et al. Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol, 2010, 153: 632-641??
[92]  8 Ruiz M T, Voinnet O, Baulcombe D C. Initiation and maintenance of virus-induced gene silencing. Plant Cell, 1998, 10: 937-946
[93]  9 Kumagai M H, Donson J, della-Cioppa G, et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl AcadSci USA, 1995, 92: 1679-1683??
[94]  10 Ratcliff F, Martin-Hernandez A M, Baulcombe D C. Technical advance. Tobacco rattle virus as a vector for analysis of gene function bysilencing. Plant J, 2001, 25: 237-245
[95]  11 Kjemtrup S, Sampson K S, Peele C G, et al. Gene silencing from plant DNA carried by a geminivirus. Plant J, 1998, 14: 91-100??
[96]  12 Tuttle J R, Idris A M, Brown J K, et al. Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperaturein cotton. Plant Physiol, 2008, 148: 41-50??
[97]  13 Fofana I B, Sangare A, Collier R, et al. A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol,2004, 56: 613-624??
[98]  14 Gossele V, Fache I, Meulewaeter F, et al. SVISS--a novel transient gene silencing system for gene function discovery and validation intobacco plants. Plant J, 2002, 32: 859-866??
[99]  15 Cai X, Wang C, Xu Y, et al. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Res, 2007, 125: 169-175??
[100]  16 He X, Jin C, Li G, et al. Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants: silencing of thetomato ferric chelate reductase gene, FRO1, as an example. Sci China C Life Sci, 2008, 51: 402-409
[101]  17 Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant BiotechnolJ, 2009, 7: 254-265??
[102]  18 Huang C J, Zhang T, Li F F, et al. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacumusing geminivirus alphasatellite. J Zhejiang Univ Sci B, 2011, 12: 83-92
[103]  19 Tao X, Zhou X. A modified viral satellite DNA that suppresses gene expression in plants. Plant J, 2004, 38: 850-860??
[104]  20 Holzberg S, Brosio P, Gross C, et al. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J, 2002, 30: 315-327??
[105]  21 Ding X S, Schneider W L, Chaluvadi S R, et al. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing inmonocotyledonous hosts. Mol Plant Microbe Interact, 2006, 19: 1229-1239??
[106]  22 Igarashi A, Yamagata K, Sugai T, et al. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among abroad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 2009, 386: 407-416??
[107]  23 Sasaki S, Yamagishi N, Yoshikawa N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent sphericalvirus vectors. Plant Methods, 2011, 7: 15??
[108]  24 Yamagishi N, Yoshikawa N. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latentspherical virus vectors. Plant Mol Biol, 2009, 71: 15-24??
[109]  25 Scofield S R, Nelson R S. Resources for virus-induced gene silencing in the grasses. Plant Physiol, 2009, 149: 152-157??
[110]  26 van der Linde K, Kastner C, Kumlehn J, et al. Systemic virus-induced gene silencing allows functional characterization of maize genesduring biotrophic interaction with Ustilago maydis. New Phytol, 2011, 189: 471-483??
[111]  27 Bruun-Rasmussen M, Madsen C T, Jessing S, et al. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol PlantMicrobe Interact, 2007, 20: 1323-1331??
[112]  28 Pacak A, Geisler K, Jorgensen B, et al. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and inBrachypodium distachyon and oat. Plant Methods, 2010, 6: 26??
[113]  29 Scofield S R, Huang L, Brandt A S, et al. Development of a virus-induced gene-silencing system for hexaploid wheat and its use infunctional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol, 2005, 138: 2165-2173??
[114]  30 Yuan C, Li C, Yan L, et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.PLoS ONE, 2011, 6: e26468??
[115]  31 Zhang C, Bradshaw J D, Whitham S A, et al. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreigngene expression and RNA silencing. Plant Physiol, 2010, 153: 52-65??
[116]  32 Zhang C, Ghabrial S A. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specificvirus-induced gene silencing in soybean. Virology, 2006, 344: 401-411??
[117]  33 Zhang C, Yang C, Whitham S A, et al. Development and use of an efficient DNA-based viral gene silencing vector for soybean. Mol PlantMicrobe Interact, 2009, 22: 123-131??
[118]  34 Nagamatsu A, Masuta C, Senda M, et al. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced genesilencing. Plant Biotechnol J, 2007, 5: 778-790??
[119]  35 Lu H C, Chen H H, Tsai W C, et al. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol,2007, 143: 558-569
[120]  36 Burger C, Rondet S, Benveniste P, et al. Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L.obtusifoliol-14alpha-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L. J ExpBot, 2003, 54: 1675-1683
[121]  37 Faivre-Rampant O, Gilroy E M, Hrubikova K, et al. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol,2004, 134: 1308-1316??
[122]  38 Gammelgard E, Mohan M, Valkonen J P. Potyvirus-induced gene silencing: the dynamic process of systemic silencing and silencingsuppression. J Gen Virol, 2007, 88: 2337-2346??
[123]  39 Constantin G D, Gronlund M, Johansen I E, et al. Virus-induced gene silencing (VIGS) as a reverse genetic tool to study development ofsymbiotic root nodules. Mol Plant Microbe Interact, 2008, 21: 720-727??
[124]  40 Constantin G D, Krath B N, MacFarlane S A, et al. Virus-induced gene silencing as a tool for functional genomics in a legume species. PlantJ, 2004, 40: 622-631??
[125]  41 Gronlund M, Constantin G, Piednoir E, et al. Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res, 2008,135: 345-349??
[126]  42 Naylor M, Reeves J, Cooper J I, et al. Construction and properties of a gene-silencing vector based on Poplar mosaic virus (genusCarlavirus). J Virol Methods, 2005, 124: 27-36??
[127]  43 Vaistij F E, Jones L. Compromised virus-induced gene silencing in RDR6-deficient plants. Plant Physiol, 2009, 149: 1399-1407??
[128]  44 Varallyay E, Lichner Z, Safrany J, et al. Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. ActaBiol Hung, 2010, 61: 457-469??
[129]  45 Hiriart J B, Aro E M, Lehto K. Dynamics of the VIGS-mediated chimeric silencing of the Nicotiana benthamiana ChlH gene and of thetobacco mosaic virus vector. Mol Plant Microbe Interact, 2003, 16: 99-106??
[130]  46 Metzlaff M. RNA-mediated RNA degradation in transgene- and virus-induced gene silencing. Biol Chem, 2002, 383: 1483-1489??
[131]  47 Pignatta D, Kumar P, Turina M, et al. Quantitative analysis of efficient endogenous gene silencing in Nicotiana benthamiana plants usingtomato bushy stunt virus vectors that retain the capsid protein gene. Mol Plant Microbe Interact, 2007, 20: 609-618??
[132]  48 Brigneti G, Martin-Hernandez A M, Jin H, et al. Virus-induced gene silencing in Solanum species. Plant J, 2004, 39: 264-272??
[133]  49 Burch-Smith T M, Schiff M, Liu Y, et al. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol, 2006, 142: 21-27??
[134]  50 Chen J C, Jiang C Z, Gookin T E, et al. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. PlantMol Biol, 2004, 55: 521-530??
[135]  51 Chung E, Seong E, Kim Y C, et al. A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv.Bukang). Mol Cells, 2004, 17: 377-380
[136]  52 Fu D Q, Zhu B Z, Zhu H L, et al. Virus-induced gene silencing in tomato fruit. Plant J, 2005, 43: 299-308??
[137]  53 Fu D Q, Zhu B Z, Zhu H L, et al. Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol Cells,2006, 21: 153-160??
[138]  54 Gao X, Wheeler T, Li Z, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011, 66:293-305??
[139]  55 Gould B, Kramer E M. Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine,Ranunculaceae). Plant Methods, 2007, 3: 6??
[140]  56 Hileman L C, Drea S, Martino G, et al. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicotspecies Papaver somniferum (opium poppy). Plant J, 2005, 44: 334-341??
[141]  57 Liu Y, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786??
[142]  58 Liu Y, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobaccomosaic virus. Plant J, 2002, 30: 415-429
[143]  59 Ryu C M, Anand A, Kang L, et al. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots anddiverse Solanaceous species. Plant J, 2004, 40: 322-331??
[144]  60 Senthil-Kumar M, Hema R, Anand A, et al. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and otherSolanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol, 2007, 176: 782-791??
[145]  61 Wege S, Scholz A, Gleissberg S, et al. Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica):an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot, 2007, 100: 641-649??
[146]  62 Di Stilio V S, Kumar R A, Oddone A M, et al. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoSONE, 2010, 5: e12064
[147]  63 Pflieger S, Blanchet S, Camborde L, et al. Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector.Plant J, 2008, 56: 678-690??
[148]  64 Krenz B, Wege C, Jeske H. Cell-free construction of disarmed Abutilon mosaic virus-based gene silencing vectors. J Virol Methods, 2010,169: 129-137??
[149]  106 Chandok M R, Ekengren S K, Martin G B, et al. Suppression of pathogen-inducible NO synthase (iNOS) activity in tomato increasessusceptibility to Pseudomonas syringae. Proc Natl Acad Sci USA, 2004, 101: 8239-8244??
[150]  107 Kanzaki H, Saitoh H, Ito A, et al. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response andnon-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol, 2003, 4: 383-391??
[151]  108 Maimbo M, Ohnishi K, Hikichi Y, et al. S-glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstoniasolanacearum. Plant Physiol, 2010, 152: 2023-2035??
[152]  109 Sharma P C, Ito A, Shimizu T, et al. Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has noeffect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol Genet Genomics, 2003, 269: 583-591
[153]  110 Hwang I S, Hwang B K. Role of the pepper cytochrome P450 gene CaCYP450A in defense responses against microbial pathogens. Planta, 2010,232: 1409-1421??
[154]  111 Leister R T, Dahlbeck D, Day B, et al. Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2protein activity in Nicotiana benthamiana. Plant Cell, 2005, 17: 1268-1278??
[155]  112 Lee D H, Choi H W, Hwang B K. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylicacid-dependent defense response. Plant Physiol, 2011, 156: 2011-2025
[156]  113 Melech-Bonfil S, Sessa G. The SlMKK2 and SlMPK2 genes play a role in tomato disease resistance to Xanthomonas campestris pv.vesicatoria. Plant Signal Behav, 2011, 6: 154-156??
[157]  114 Schornack S, Ballvora A, Gurlebeck D, et al. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein thatmediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J, 2004, 37: 46-60??
[158]  115 Bhattarai K K, Atamian H S, Kaloshian I, et al. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsisas well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J, 2010, 63: 229-240??
[159]  116 Bhattarai K K, Li Q, Liu Y, et al. The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol, 2007, 144: 312-323??
[160]  117 Jablonska B, Ammiraju J S, Bhattarai K K, et al. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knotnematodes is a homolog of Mi-1. Plant Physiol, 2007, 143: 1044-1054
[161]  118 Li Q, Xie Q G, Smith-Becker J, et al. Mi-1-Mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signalingcascades. Mol Plant Microbe Interact, 2006, 19: 655-664??
[162]  119 Mantelin S, Peng H C, Li B, et al. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato.Plant J, 2011, 67: 459-471??
[163]  120 Kang J H, Wang L, Giri A, et al. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediateddefenses against Manduca sexta. Plant Cell, 2006, 18: 3303-3320??
[164]  133 Liu Y, Nakayama N, Schiff M, et al. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol,2004, 54: 701-711??
[165]  134 Dong Y, Burch-Smith T M, Liu Y, et al. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced genesilencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol, 2007, 145: 1161-1170??
[166]  135 Chen J C, Jiang C Z, Reid M S. Silencing a prohibitin alters plant development and senescence. Plant J, 2005, 44: 16-24??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133