全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用拟南芥杂交组合研究siRNA与等位基因DNA甲基化调控中的联系

DOI: 10.1360/052013-282, PP. 897-904

Keywords: 单核苷酸多态性(SNP),DNA甲基化,siRNA,顺式作用,反式作用,等位基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,越来越多的实验结果表明,表观遗传因子,如DNA甲基化、小RNA、组蛋白修饰等在杂种优势形成中起到重要作用,然而对于这些表观遗传因子在F1中遗传调控方式的认识仍很有限.本实验室先前工作曾以拟南芥C24和Ler两种生态型及其正反交子一代为材料,运用新一代测序方法获得该杂交组合中DNA甲基化及小RNA单碱基分辨率的全基因组图谱.本文进一步对这批数据中的等位基因DNA甲基化水平进行分析,区分DNA甲基化遗传过程中的顺式与反式调控方式,并发现这两种调控方式均有重要的贡献.研究发现,siRNA与DNA甲基化的两种调控方式有密切联系,尤其在DNA甲基化的反式调控中,F1中DNA甲基化变化程度越大,该区域内siRNA富集程度越强,二者可能存在某种调控机制.通过等位基因表观遗传组的分析研究杂交过程中DNA甲基化和小RNA遗传调控的规律,为更好地理解杂种优势机制提供了帮助.

References

[1]  8 Jiang L, Zhang J, Wang J J, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell, 2013, 153: 773-784
[2]  9 Potok M E, Nix D A, Parnell T J, et al. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell, 2013, 153: 759-772
[3]  10 Autran D, Baroux C, Raissig M T, et al. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell, 2011, 145: 707-719
[4]  11 Blewitt M E, Gendrel A V, Pang Z, et al. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet, 2008, 40: 663-669
[5]  12 Chodavarapu R K, Feng S, Ding B, et al. Transcriptome and methylome interactions in rice hybrids. Proc Natl Acad Sci USA, 2012, 109: 12040-12045
[6]  1 Morgan H D, Sutherland H G, Martin D I, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet, 1999, 23: 314-318
[7]  2 Schmitz R J, Schultz M D, Lewsey M G, et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science, 2011, 334: 369-373
[8]  3 Becker C, Hagmann J, Müller J, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature, 2011, 480: 245-249
[9]  4 Wossidlo M, Nakamura T, Lepikhov K, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun, 2011, 2: 241
[10]  5 Gu T P, Guo F, Yang H, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477: 606-610
[11]  6 Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 2011, 334: 194
[12]  7 Smith Z D, Chan M M, Mikkelsen T S, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature, 2012, 484: 339-344
[13]  13 Greaves I K, Groszmann M, Ying H, et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc Natl Acad Sci USA, 2012, 109: 3570-3575
[14]  14 Groszmann M, Greaves I K, Albertyn Z I, et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA, 2011, 108: 2617-2622
[15]  15 Greaves I, Groszmann M, Dennis E S, et al. Trans-chromosomal methylation. Epigenetics, 2012, 7: 800-805
[16]  16 He G, Zhu X, Elling A A, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010, 22: 17-33
[17]  18 Shivaprasad P V, Dunn R M, Santos B A, et al. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J, 2012, 31: 257-266
[18]  19 Wassenegger M, Heimes S, Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994, 76: 567-576
[19]  20 Henderson I R, Zhang X, Lu C, et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet, 2006, 38: 721-725
[20]  21 Henderson I R, Jacobsen S E. Epigenetic inheritance in plants. Nature, 2007, 447: 418-424
[21]  22 Law J A, Jacobsen S E. Molecular biology. Dynamic DNA methylation. Science, 2009, 323: 1568-1569
[22]  23 Law J A, Jacobsen S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11: 204-220
[23]  24 Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics, 2009, 10: 421
[24]  25 Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10: R25
[25]  26 Krueger F, Andrews S R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 2011, 27: 1571-1572
[26]  27 Schneeberger K, Ossowski S, Ott F, et al. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA, 2011, 108: 10249-10254
[27]  28 Gan X, Stegle O, Behr J, et al. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 2011, 477: 419-423
[28]  17 Shen H, He H, Li J, et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell, 2012, 24: 875-892
[29]  29 Cao J, Schneeberger K, Ossowski S, et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet, 2011, 43: 956-963
[30]  30 Stouder C, Paoloni-Giacobino A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction, 2010, 139: 373-379
[31]  31 Schilling E, El Chartouni C, Rehli M. Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res, 2009, 19: 2028-2035
[32]  32 Xie W, Barr C L, Kim A, et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 2012, 148: 816-831

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133