1 Winkler B S, Sauer M W, Starnes C A. Modulation of the Pasteur effect in retinal cells: implications for understanding compensatory metabolic mechanisms. Exp Eye Res, 2003, 76: 715-723
[2]
2 Graymore C, Tansley K. Iodoacetate poisoning of the rat retina. I. Production of retinal degeneration. Br J Ophthalmol, 1959, 43: 177-185
[3]
3 Noell W K. The effect of iodoacetate on the vertebrate retina. J Cell Comp Physiol, 1951, 37: 283-307
[4]
4 Noell W K. The impairment of visual cell structure by Iodoacetate. J Cell Comp Physiol, 1952, 40: 25-55
[5]
5 Noell W K. Studies on the Electrophysiology and the Metabolism of the Retina. U.S.A.F. School of Aviation Medicine, Project No. 21-1201-0004, Report 1, Randolph Field, Texas, 1953, 1-122
[6]
6 Orzalesi N, Calabria G A, Grignolo A. Experimental degeneration of the rabbit retina induced by iodoacetic acid. A study of the ultrastructure, the rhodopsin cycle and the uptake of 14C-labeled iodoacetic acid. Exp Eye Res, 1970, 9: 246-253
[7]
7 Liang L, Katagiri Y, Franco L M, et al. Long-term cellular and regional specificity of the photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Vis Neurosci, 2008, 25: 167-177
[8]
8 Yamauchi Y, Agawa T, Tsukahara R, et al. Correlation between high-resolution optical coherence tomography (OCT) images and histopathology in an iodoacetic acid-induced model of retinal degeneration in rabbits. Br J Ophthalmol, 2011, 95: 1157-1160
[9]
9 Farber D B, Souza D W, Chase D G. Cone visual cell degeneration in ground squirrel retina: disruption of morphology and cyclic nucleotide metabolism by lodoacetic acid. Invest Ophthalmol Vis Sci, 1983, 24: 1236-1249
[10]
10 Scott P A, Kaplan H J, Sandell J H. Anatomical evidence of photoreceptor degeneration induced by iodoacetic acid in the porcine eye. Exp Eye Res, 2011, 93: 513-527
[11]
11 Noel J M, Fernandez de Castro J P, Demarco P J Jr, et al. Iodoacetic acid, but not sodium iodate, creates an inducible swine model of photoreceptor damage. Exp Eye Res, 2012, 97: 137-147
[12]
12 Yamamoto F, Honda Y. Effects of intravenous iodoacetate and iodate on pH outside rod photoreceptors in the cat retina. Invest Ophthalmol Vis Sci, 1993, 34: 2009-2017
[13]
13 Winkler B S, Sauer M W, Starnes C A. Modulation of the Pasteur effect in retinal cells: implications for understanding compensatory metabolic mechanisms. Exp Eye Res, 2003, 76: 715-723
[14]
14 Wang W, Fernandez de Castro J, Vukmanic E, et al. Selective rod degeneration and partial cone inactivation characterize an iodoacetic acid model of Swine retinal degeneration. Invest Ophthalmol Vis Sci, 2011, 52: 7917-7923
[15]
15 Nan Y, Xiao C, Chen B, et al. Visual response properties of Y cells in the detached feline retina. Invest Ophthalmol Vis Sci, 2010, 51: 1208-1215
[16]
16 Narfstr?m K. Progressive retinal atrophy in the Abyssinian cat. Sven Vet Tidn, 1981, 33: 147-150
[17]
17 Narfstr?m K. Hereditary progressive retinal atrophy in the Abyssinian cat. J Hered, 1983, 74: 273-276
[18]
18 Barnett K C, Curtis R. Autosomal dominant progressive retinal atrophy in Abyssinian cats. J Hered, 1985, 76: 168-170
[19]
19 Curtis R, Barnett K C, Leon A. An early-onset retinal dystrophy with dominant inheritance in the Abyssinian cat. Clinical and pathological findings. Invest Ophthalmol Vis Sci, 1987, 28: 131-139
[20]
20 Rah H, Maggs D J, Blankenship T N, et al. Early-onset, autosomal recessive, progressive retinal atrophy in Persian cats. Invest Ophthalmol Vis Sci, 2005, 46: 1742-1747
[21]
21 Menotti-Raymond M, Deckman K H, David V, et al. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol Vis Sci, 2010, 51: 2852-2859
[22]
22 Berson E L. Acute toxic effects of chloroquine on the cat retina. Invest Ophthalmol, 1970, 9: 618-628
[23]
23 Burke W, Hayhow W R. Disuse in the lateral geniculate nucleus of the cat. J Physiol, 1968, 194: 495-519
[24]
24 Lucas R J, Hattar S, Takao M, et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science, 2003, 299: 245-247
[25]
25 Güler A D, Ecker J L, Lall G S, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature, 2008, 453: 102-105
[26]
26 Do M T, Kang S H, Xue T, et al. Photon capture and signalling by melanopsin retinal ganglion cells. Nature, 2009, 457: 281-287