全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

油菜、蚕豆、鹰嘴豆和大豆对间作玉米籽粒Fe,Mn,Cu和Zn浓度及地上部累积量的影响

, PP. 557-568

Keywords: 间套作,玉米,微量元素,收获指数,稀释效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前较多研究关注单作玉米的籽粒微量元素问题,间套作对玉米籽粒微量元素浓度和地上部吸收量的影响尚不清楚.田间试验用来研究白菜型油菜、蚕豆、鹰嘴豆和大豆对间作玉米籽粒铁(Fe)、锰(Mn)、铜(Cu)和锌(Zn)浓度及其相应地上部植株吸收量的影响.与单作玉米相比,与豆科作物间作玉米籽粒Fe,Mn,Cu和Zn的浓度及其相应的收获指数降低,而与白菜型油菜间作玉米则保持与单作玉米相同水平;但是间作促进了玉米植株地上部对Fe,Mn,Cu和Zn的吸收量.进一步研究表明,玉米籽粒产量与籽粒Fe和Cu的浓度呈显著负相关关系,而与Mn和Zn的浓度则未达到显著相关,但是所有这些籽粒微量元素浓度与相应的收获指数间均呈显著性正相关关系.因此,与蚕豆、鹰嘴豆和大豆间作玉米籽粒微量元素浓度的降低,主要是由Fe,Mn,Cu和Zn从营养器官向籽粒转移或再活化的比例降低所致,这可能与相应的玉米衰老进程减缓有关.白菜型油菜/玉米间作有利于维持玉米籽粒高产,同时未降低籽粒Fe,Mn,Cu和Zn的浓度,适合在本地区推广.

References

[1]  1 Vandermeer J. The Ecology of Intercropping. New York: Cambridge University Press, 1989
[2]  2 Knoerzer H, Graeff-Hoenninger S, Guo B, et al. The rediscovery of intercropping in China: a traditional cropping system for future chinese agriculture-A review. In: Lichtfouse E, ed. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. New York: Springer, 2009. 13-44
[3]  3 Hauggaard-Nielsen H, Jensen E S. Facilitative root interactions in intercrops. Plant Soil, 2005, 274: 237-250
[4]  4 Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA, 2007, 104: 11192-11196
[5]  5 R?mheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 1986, 80: 175-180
[6]  6 Zuo Y M, Zhang F S, Li X L, et al. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil, 2000, 220: 13-25
[7]  7 An L Y, Pan Y H, Wang Z B, et al. Heavy metal absorption status of five plant species in monoculture and intercropping. Plant Soil, 2011, 345: 237-245
[8]  8 White P J, Broadley M R. Biofortifying crops with essential mineral elements. Trends Plant Sci, 2005, 10: 586-593
[9]  9 Pixley K V, Palacios-Rojas N, Glahn R P. The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crop Res, 2011, 123: 153-160
[10]  10 Feil B, Moser S B, Jampatong S, et al. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci, 2005, 45: 516-523
[11]  11 Bouis H E, Hotz C, McClafferty B, et al. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2011, 32: S31-S40
[12]  12 Bruns H A, Ebelhar M W. Nutrient uptake of maize affected by nitrogen and potassium fertility in a humid subtropical environment. Commun Soil Sci Plant Anal, 2006, 37: 275-293
[13]  13 Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. Plant Soil, 2011, 349: 157-167
[14]  14 Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought. Glob Environ Change, 2009, 19: 292-305
[15]  15 Stukenho D D, Olsen R J, Gogan G, et al. On the mechanism of phosphorus-zinc interaction in corn nutrition. Soil Sci Soc Am Proc, 1966, 30: 759-763
[16]  16 Ryan M H, McInerney J K, Record I R, et al. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. J Sci Food Agric, 2008, 88: 1208-1216
[17]  17 Fan M S, Zhao F J, Fairweather-Tait S J, et al. Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Bio, 2008, 22: 315-324
[18]  18 Pleijel H, Danielsson H. Yield dilution of grain Zn in wheat grown in open-top chamber experiments with elevated CO2 and O3 exposure. J Cereal Sci, 2009, 50: 278-282
[19]  19 Kutman U, Yildiz B, Cakmak I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil, 2011, 342: 149-164
[20]  20 Cakmak I, Kalayci M, Kaya Y, et al. Biofortification and localization of zinc in wheat grain. J Agric Food Chem, 2010, 58: 9092-9102
[21]  21 Peterson C J, Johnson V A, Mattern P J. Evaluation of variation in mineral element concentrations in wheat-flour and bran of different cultivars. Cereal Chem, 1983, 60: 450-455
[22]  22 Calderini D F, Ortiz-Monasterio I. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci, 2003, 43: 141-151
[23]  23 Shi R L, Weber G, Koster J, et al. Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants. New Phytol, 2012, 195: 372-383
[24]  24 Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1300
[25]  25 Oikeh S O, Menkir A, Maziya-Dixon B, et al. Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions. J Plant Nutr, 2003, 26: 2307-2319
[26]  26 Oikeh S O, Menkir A, Maziya-Dixon B, et al. Environmental stability of iron and zinc concentrations in grain of elite early-maturing tropical maize genotypes grown under field conditions. J Agric Sci, 2004, 142: 543-551
[27]  27 何萍, 金继运, 林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998, 31: 66-71
[28]  28 Li L, Sun J H, Zhang F S. Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages. Soil Sci Plant Nutr, 2011, 57: 61-67

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133