1 Semenza G L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148: 399-408
[2]
2 Semenza G L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Phytopathol, 2014, 9: 47-71
[3]
3 Majmundar A J, Wong W J, Simon M C. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell, 2010, 40: 294-309
[4]
4 Dunwoodie S L. The role of hypoxia in development of the Mammalian embryo. Dev Cell, 2009, 17: 755-773
[5]
5 Schofield C J, Ratcliffe P J. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 2004, 5: 343-354
[6]
6 Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol, 2007, 69: 145-170
[7]
7 Greer S N, Metcalf J L, Wang Y, et al. The updated biology of hypoxia-inducible factor. EMBO J, 2012, 31: 2448-2460
[8]
8 Aragones J, Fraisl P, Baes M, et al. Oxygen sensors at the crossroad of metabolism. Cell Metab, 2009, 9: 11-22
[9]
9 Kaelin W G. Von Hippel-Lindau disease. Annu Rev Pathypathol, 2007, 2: 145-173
[10]
10 Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008, 453: 807-811
[11]
11 Flugel D, Gorlach A, Michiels C, et al. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol, 2007, 27: 3253-3265
[12]
64 van Rooijen E, Voest E E, Logister I, et al. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood, 2009, 113: 6449-6460
[13]
65 Lindsley J E, Rutter J. Nutrient sensing and metabolic decisions. Comp Biochem Physiol Part B Biochem Mol Biol, 2004, 139: 543-559
[14]
12 Ryu J H, Li S H, Park H S, et al. Hypoxia-inducible factor alpha subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem, 2011, 286: 6963-6970
[15]
13 Sang N, Fang J, Srinivas V, et al. Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol Cell Biol, 2002, 22: 2984-2992
[16]
14 Mehta R, Steinkraus K A, Sutphin G L, et al. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science, 2009, 324: 1196-1198
[17]
15 Chen D, Thomas E L, Kapahi P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet, 2009, 5: e1000486
[18]
16 Zhong L, D''Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell, 2010, 140: 280-293
[19]
17 Lim J H, Lee Y M, Chun Y S, et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell, 2010, 38: 864-878
[20]
18 Dioum E M, Chen R, Alexander M S, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science, 2009, 324: 1289-1293
[21]
19 Gomes A P, Price N L, Ling A J, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 2013, 155: 1624-1638
[22]
20 Hubbi M E, Hu H, Kshitiz Gilkes D M, et al. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Bioll Chem, 2013, 288: 20768-20775
[23]
21 Finley L W, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell, 2011, 19: 416-428
[24]
22 Shao R, Zhang F P, Tian F, et al. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS lett, 2004, 569: 293-300
[25]
23 Carbia-Nagashima A, Gerez J, Perez-Castro C, et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell, 2007, 131: 309-323
[26]
24 Cheng J, Kang X, Zhang S, et al. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell, 2007, 131: 584-595
[27]
25 Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 2011, 145: 732-744
[28]
26 Montagner M, Enzo E, Forcato M, et al. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature, 2012, 487: 380-384
[29]
27 Chen Z, Liu X, Mei Z, et al. EAF2 suppresses hypoxia-induced factor 1alpha transcriptional activity by disrupting its interaction with coactivator CBP/p300. Mol Cell Biol, 2014, 34: 1085-1099
[30]
30 Bernardi R, Guernah I, Jin D, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature, 2006, 442: 779-785
[31]
31 Huang C, Han Y, Wang Y, et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J, 2009, 28: 2748-2762
[32]
32 Foxler D E, Bridge K S, James V, et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat Cell Biol, 2012, 14: 201-208
[33]
33 Nilsson G E, Renshaw G M. Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol, 2004, 207: 3131-3139
[34]
34 Nilsson G E. Surviving anoxia with the brain turned on. News Physiol Sci, 2001, 16: 217-221
[35]
35 Lutz P L, Nilsson G E. Vertebrate brains at the pilot light. Resp Physiol Neurobi, 2004, 141: 285-296
[36]
36 Stecyk J A, Stenslokken K O, Farrell A P, et al. Maintained cardiac pumping in anoxic crucian carp. Science, 2004, 306: 77
[37]
37 Shoubridge E A, Hochachka P W. Ethanol: novel end product of vertebrate anaerobic metabolism. Science, 1980, 209: 308-309
[38]
38 Roesner A, Mitz S A, Hankeln T, et al. Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J, 2008, 275: 3633-3643
[39]
39 Rytk?nen K T, Akbarzadeh A, Miandare H K, et al. Subfunctionalization of cyprinid hypoxia-inducible factors for roles in development and oxygen sensing. Evolution, 2013, 67: 873-882
[40]
40 Chi W, Gan X, Xiao W, et al. Different evolutionary patterns of hypoxia-inducible factor alpha (HIF-alpha) isoforms in the basal branches of Actinopterygii and Sarcopterygii. FEBS Open Bio, 2013, 3: 479-483
[41]
41 Nilsson G E, Dymowska A, et al. New insights into the plasticity of gill structure. Resp Physiol Neurobiol, 2012, 184: 214-222
[42]
42 Turko A J, Cooper C A, Wright P A. Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus. J Exp Biol, 2012, 215: 3973-3980
[43]
43 Dhillon R S, Yao L, Matey V, et al. Interspecific differences in hypoxia-induced gill remodeling in carp. Physiol Biochem Zool, 2013, 86: 727-739
[44]
44 Tzaneva V, Vadeboncoeur C, Ting J, et al. Effects of hypoxia-induced gill remodelling on the innervation and distribution of ionocytes in the gill of goldfish, Carassius auratus. J Comp Neurol, 2014, 522: 118-130
[45]
45 Mitrovic D, Dymowska A, Nilsson G E, et al. Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia. Am J Physiol Regul Integr Comp Physiol, 2009, 297: R224-R234
[46]
46 Zachar P C, Jonz M G. Oxygen sensitivity of gill neuroepithelial cells in the anoxia-tolerant goldfish. Adv Exp Med Biol, 2012, 758: 167-172
[47]
47 Cameron J S, DeWitt J P, Ngo T T, et al. Cardiac K(ATP) channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.). Comp Biochem Physiol A Mol Integr Physiol, 2013, 164: 554-564
[48]
48 Capossela K M, Brill R W, Fabrizio M C, et al. Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures. J Fish Biol, 2012, 81: 1043-1058
[49]
49 Feng X, Liu X, Zhang W, et al. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J, 2011, 30: 3397-3415
[50]
50 Soitamo A J, Rabergh C M, Gassmann M, et al. Characterization of a hypoxia-inducible factor (HIF-1alpha ) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem, 2001, 276: 19699-19705
[51]
51 Rahman M S, Thomas P. Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1alpha and HIF-2alpha, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene, 2007, 396: 273-282
[52]
52 Rojas D A, Perez-Munizaga D A, Centanin L, et al. Cloning of hif-1alpha and hif-2alpha and mRNA expression pattern during development in zebrafish. Gene Expr Patterns, 2007, 7: 339-345
[53]
53 Shen R J, Jiang X Y, Pu J W, et al. HIF-1alpha and -2alpha genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol Part B Biochem Mol Biol, 2010, 157: 273-280
[54]
54 Cao Y B, Chen X Q, Wang S, et al. Evolution and regulation of the downstream gene of hypoxia-inducible factor-1alpha in naked carp (Gymnocypris przewalskii) from Lake Qinghai, China. J Mol Evol, 2008, 67: 570-580
[55]
55 Rytkonen K T, Vuori K A, Primmer C R, et al. Comparison of hypoxia-inducible factor-1 alpha in hypoxia-sensitive and hypoxia-tolerant fish species. Comp Biochem Physiol Part D Genomics Proteomics, 2007, 2: 177-186
[56]
56 Terova G, Rimoldi S, Cora S, et al. Acute and chronic hypoxia affects HIF-1 alpha mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture, 2008, 279: 150-159
[57]
57 Mohindra V, Tripathi R K, Singh R K, et al. Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1alpha, -2alpha and -3alpha in hypoxia-tolerant Indian catfish, Clarias batrachus [Linnaeus, . Mol Biol Rep, 2013, 40: 5805-5815
[58]
58 Geng X, Feng J, Liu S, et al. Transcriptional regulation of hypoxia inducible factors alpha (HIF-alpha) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol Part B Biochem Mol Biol, 2014, 169: 38-50
[59]
28 Nakayama K, Frew I J, Hagensen M, et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell, 2004, 117: 941-952
[60]
29 Jung C R, Hwang K S, Yoo J, et al. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nat Med, 2006, 12: 809-816
[61]
59 Law S H, Wu R S, Ng P K, et al. Cloning and expression analysis of two distinct HIF-alpha isoforms—gcHIF-1alpha and gcHIF-4alpha—from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol, 2006, 7: 15
[62]
60 Rimoldi S, Terova G, Ceccuzzi P, et al. HIF-1alpha mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Mol Biol Rep, 2012, 39: 4009-4015
[63]
61 Kaelin W G Jr, Ratcliffe P J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell, 2008, 30: 393-402
[64]
62 Koivunen P, Tiainen P, Hyvarinen J, et al. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem, 2007, 282: 30544-30552
[65]
63 Nikinmaa M, Rees B B. Oxygen-dependent gene expression in fishes. Am J Physiol-Reg I, 2005, 288: R1079-R1090
[66]
66 Krumschnabel G, Biasi C, Wieser W. Action of adenosine on energetics, protein synthesis and K+ homeostasis in teleost hepatocytes. J Exp Biol, 2000, 203: 2657-2665
[67]
67 Nilsson G E. The adenosine receptor blocker aminophylline increases anoxic ethanol excretion in crucian carp. Am J Physiol, 1991, 261: R1057-R1060
[68]
68 Nilsson G E, Hylland P, Lofman C O. Anoxia and adenosine induce increased cerebral blood flow rate in crucian carp. Am J Physiol, 1994, 267: R590-R595
[69]
69 Krumschnabel G, Schwarzbaum P J, Lisch J, et al. Oxygen-dependent energetics of anoxia-tolerant and anoxia-intolerant hepatocytes. J Exp Biol, 2000, 203: 951-959
[70]
70 Hermes-Lima M, Zenteno-Savín T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp biochem physiol C Toxicol pharmacol, 2002, 133: 537-556
[71]
71 Lushchak V I, Lushchak L P, Mota A A, et al. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol-Reg I, 2001, 280: R100-107
[72]
72 Vig E, Gabrielak T, Leyko W, et al. Purification and characterization of Cu, Zn-superoxide dismutase from common carp liver. Comp Biochem Physiol Part B Biochem Mol Biol, 1989, 94: 395-397
[73]
73 Zhong X P, Wang D, Zhang Y B, et al. Identification and characterization of hypoxia-induced genes in Carassius auratus blastulae embryonic cells using suppression subtractive hybridization. Comp Biochem Physiol Part B Biochem Mol Biol, 2009, 152: 161-170
[74]
74 Liao X, Cheng L, Xu P, et al. Transcriptome analysis of crucian carp (Carassius auratus), an important aquaculture and hypoxia-tolerant species. PLoS One, 2013, 8: e62308
[75]
75 Everett M V, Antal C E, Crawford D L. The effect of short-term hypoxic exposure on metabolic gene expression. J Exp Zool A Ecol Genet Physiol, 2012, 317: 9-23
[76]
76 Chen K, Cole R B, Rees B B. Hypoxia-induced changes in the zebrafish (Danio rerio) skeletal muscle proteome. J Proteomics, 2013, 78: 477-485
[77]
77 Zhang Z, Wu R S, Mok H O, et al. Isolation, characterization and expression analysis of a hypoxia-responsive glucose transporter gene from the grass carp, Ctenopharyngodon idellus. Eur J Biochem, 2003, 270: 3010-3017
[78]
78 Hall J R, Richards R C, MacCormack T J, et al. Cloning of GLUT3 cDNA from Atlantic cod (Gadus morhua) and expression of GLUT1 and GLUT3 in response to hypoxia. Biochim Biophys Acta, 2005, 1730: 245-252
[79]
79 Terova G, Rimoldi S, Brambilla F, et al. In vivo regulation of GLUT2 mRNA in sea bass (Dicentrarchus labrax) in response to acute and chronic hypoxia. Comp Biochem Physiol Part B Biochem Mol Biol, 2009, 152: 306-316
[80]
80 Chou C F, Tohari S, Brenner S, et al. Erythropoietin gene from a teleost fish, Fugu rubripes. Blood, 2004, 104: 1498-1503
[81]
81 Chu C Y, Cheng C H, Chen G D, et al. The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS Lett, 2007, 581: 4265-4271
[82]
82 Paffett-Lugassy N, Hsia N, Fraenkel P G, et al. Functional conservation of erythropoietin signaling in zebrafish. Blood, 2007, 110: 2718-2726
[83]
83 Pierron F, Baudrimont M, Gonzalez P, et al. Common pattern of gene expression in response to hypoxia or cadmium in the gills of the European glass eel (Anguilla anguilla). Environ Sci Technol, 2007, 41: 3005-3011
[84]
84 Vuori K A, Soitamo A, Vuorinen P J, et al. Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1alpha) and consecutive gene expression. Aquat Toxicol, 2004, 68: 301-313
[85]
85 Yu R M, Ng P K, Tan T, et al. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). Aquat Toxicol, 2008, 90: 235-242
[86]
86 Wang D, Zhong X P, Qiao Z X, et al. Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress. J Exp Biol, 2008, 211: 2700-2706
[87]
87 Stevenson T J, Trinh T, Kogelschatz C, et al. Hypoxia disruption of vertebrate CNS pathfinding through ephrinB2 Is rescued by magnesium. PLoS Genet, 2012, 8: e1002638
[88]
88 Barriga E H, Maxwell P H, Reyes A E, et al. The hypoxia factor Hif-1alpha controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol, 2013, 201: 759-776