全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中足载荷再分配的离体实验与有限元研究

, PP. 1189-1194

Keywords: 有限元分析,足弓,生物力学,尸体实验,中足

Full-Text   Cite this paper   Add to My Lib

Abstract:

罕有研究关注中足生物力学,这导致对足部生物力学的理解存在短板.本研究建立了一个足踝有限元模型,并用离体实验来对其进行验证,继而采用2种方法来研究中足生物力学.研究中,采用该模型和7具人体离体标本来模拟正常步态中的站立中期.模拟发现,中足骨骼结构的第一主应力峰值发生于舟骨,所有韧带中弹簧韧带的拉力最大.实验结果发现,中间楔骨为-26.2±10.8微应变,舟骨纵轴方向为-240.0±169.1微应变,横轴方向为65.1±25.8微应变.舟骨的解剖位置和弹簧韧带的作用对舟骨的力学环境影响至关重要,导致其剪切应力较大.力学载荷自踝关节分流至前足5个分支,在中足楔骨和骰骨发生了载荷的再分配.对其载荷再分配机制的研究在今后应该加强,将有助于对足部整体生物力学的理解和认识.

References

[1]  1 Snedeker J G, Wirth S H, Espinosa N. Biomechanics of the normal and arthritic ankle joint. Foot Ankle Clin, 2012, 17: 517-528
[2]  2 Collan L, Kankare J A, Mattila K. The biomechanics of the first bone in hallux valgus: a preliminary study utilizing a weight bearing extremity CT. Foot Ankle Surg, 2013, 19: 155-161
[3]  3 Moshirfar A, Campbell J T, Molloy S, et al. Fifth metatarsal tuberosity fracture fixation: a biomechanical study. Foot Ankle Int, 2003, 24: 630-633
[4]  4 Ni M, Weng X H, Mei J, et al. Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: a finite element analysis. J Med Biol Eng, 2014, doi: 10.5405/jmbe.1624
[5]  5 Niu W X, Yao J, Chu Z W, et al. Effects of ankle eversion, limb laterality and ankle stabilizers on transient postural stability during unipedal standing. J Med Biol Eng, 2014, doi: 10.5405/jmbe.1675
[6]  6 Niu W, Chu Z, Yao J, et al. Effects of laterality, ankle inversion and stabilizers on the plantar pressure distribution during unipedal standing. J Mech Med Biol, 2012, 12: 1250055
[7]  7 Yu J, Cheung J T M, Wong D W C, et al. Biomechanical simulation of high-heel shoe donning and walking. J Biomech, 2013, 46: 2067-2074
[8]  8 Benirschke S K, Meinberg E, Anderson S A, et al. Fractures and dislocations of the midffot: Lisfrac and Chopart injuries. J Bone Joint Surg Am, 2012, 18: 1325-1337
[9]  9 Pearce C J, Calder J D. Surgical anatomy of the midfoot. Knee Surg Sports Traumatol Arthrosc, 2010, 18: 581-586
[10]  10 Makwana N K, van Lifefland M R. Injuries of the midfoot. Curr Orthopaed, 2005, 19: 231-242
[11]  11 梁军, 杨云峰, 俞光荣, 等. 人体足底韧带松解后足部的形态改变及应力分布的实验研究. 中国科学: 生命科学, 2011, 54: 267-271
[12]  12 Cheung J T M, Zhang M, Leung A K L, et al. Three-dimensional finite element analysis of the foot during standing: a material sensitivity study. J Biomech, 2005, 38: 1045-1054
[13]  13 Cheung J T M, An K N, Zhang M. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int, 2006, 27: 125-132
[14]  14 Cheung J T M, Zhang M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med Eng Phys, 2008, 30: 269-277
[15]  15 Huang RH, Li XP, Rong QG. Control mechanism for the upper airway collapse in patients with obstructive sleep apnea syndrome: a finite element study. Sci China Life Sci, 2013, 56: 366-372
[16]  16 Athansiou K A, Niederauer G G, Schenck R C Jr. Biomechanical topography of human ankle cartilage. Ann Biomed Eng, 1995, 23: 697-704
[17]  17 Athansiou K A, Fleischli J G, Bosma J, et al. Effects of diabetes mellitus on the biomechanical properties of human ankle cartilage. Clin Orthop Relat Res, 1999, 368: 182-189
[18]  18 Athansiou K A, Liu G T, Lavery L A, et al. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Relat Res, 1998, 348: 269-291
[19]  19 Liu G T, Lavery L A, Schenck R C Jr, et al. Human articular cartilage biomechanics of the second metatarsal intermediate cuneiform joint. J Foot Ankle Surg, 1997, 36: 367-374
[20]  20 Siegler S, Block J, Schneck C D. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle, 1988, 8: 234-242
[21]  21 Minns R J, Hunter J A. The mechanical and structural characteristics of the tibio-fibular interosseous membrane. Acta Orthop Scand, 1976, 47: 236-240
[22]  22 Pavan P G, Stecco C, Darwish S, et al. Investigation of the mechanical properties of the plantar aponeurosis. Surg Radiol Anat, 2011, 33: 905-911
[23]  23 Mkandawire C, Ledoux W R, Sangeorzan B J, et al. Foot and ankle ligament morphometry. J Rehabil Res Dev, 2005, 42: 809-820
[24]  24 Spears I R, Miller-Young J E, Waters M, et al. The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc, 2005, 37: 1030-1065
[25]  25 Rodgers M M. Dynamic biomechanics of the normal foot and ankle during walking and running. Phys Ther, 1988, 68: 1822-1830
[26]  26 Lin Y C, Dorn T W, Schache A G, et al. Comparison of different methods for estimating muscle forces in human movement. Proc Inst Mech Eng H, 2012, 226: 103-112
[27]  27 Martinelli N, Marinozzi A, Schulze M, et al. Effect of subtalar arthroereisis on the tibiotalar contact characteristics in a cadaveric flatfoot model. J Biomech, 2012, 45: 1745-1748
[28]  28 Wang C L, Cheng C K, Chen C W, et al. Contact areas and pressure distributions in the subtalar joint. J Biomech, 1995, 28: 269-279
[29]  29 Jung H G, Parks B G, Nguyen A, et al. Effect of tibiotalar joint arthrodesis on adjacent tarsal joint pressure in a cadaver model. Foot Ankle Int, 2007, 28: 103-108
[30]  30 Thomas J L, Moeini R, Doileau R. The effect on subtalar contact and pressure following talonavicular and midtarsal joint arthrodesis. J Foot Ankle Surg, 2000, 39: 78-88
[31]  31 Momberger N, Morgan J M, Bachus K N, et al. Calcaneocuboid joint pressure after lateral column lengthening in a cadaveric planovalgus deformity model. Foot Ankle Int, 2000, 21: 730-735
[32]  32 Lakin R C, Degnore L T, Pienkowski D. Contact mechanics of normal tarsometatarsal joints. J Bone Joint Surg Am, 2001, 83: 520-528
[33]  33 Schneider T, Dabirrahmani D, Gillies R M, et al. Biomechanical comparison of metatarsal head designs in first metatarsophalangeal joint arthroplasty. Foot Ankle Int, 2013, 34: 881-889
[34]  34 Ward K N, Soames R W. Contact patterns at the tarsal joints. Clin Biomech, 1997, 12: 496-507
[35]  35 Keaveny T M, Wachtel E F, Ford C M, et al. Differences between the tensile and compressive strengths of bovine tibial trabecular depend on modulus. J Biomech, 1994, 27: 1137-1146
[36]  36 Bayrakrar H H, Morgan E F, Niebur G L, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech, 2004, 37: 27-35

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133