1 Snedeker J G, Wirth S H, Espinosa N. Biomechanics of the normal and arthritic ankle joint. Foot Ankle Clin, 2012, 17: 517-528
[2]
2 Collan L, Kankare J A, Mattila K. The biomechanics of the first bone in hallux valgus: a preliminary study utilizing a weight bearing extremity CT. Foot Ankle Surg, 2013, 19: 155-161
[3]
3 Moshirfar A, Campbell J T, Molloy S, et al. Fifth metatarsal tuberosity fracture fixation: a biomechanical study. Foot Ankle Int, 2003, 24: 630-633
[4]
4 Ni M, Weng X H, Mei J, et al. Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: a finite element analysis. J Med Biol Eng, 2014, doi: 10.5405/jmbe.1624
[5]
5 Niu W X, Yao J, Chu Z W, et al. Effects of ankle eversion, limb laterality and ankle stabilizers on transient postural stability during unipedal standing. J Med Biol Eng, 2014, doi: 10.5405/jmbe.1675
[6]
6 Niu W, Chu Z, Yao J, et al. Effects of laterality, ankle inversion and stabilizers on the plantar pressure distribution during unipedal standing. J Mech Med Biol, 2012, 12: 1250055
[7]
7 Yu J, Cheung J T M, Wong D W C, et al. Biomechanical simulation of high-heel shoe donning and walking. J Biomech, 2013, 46: 2067-2074
[8]
8 Benirschke S K, Meinberg E, Anderson S A, et al. Fractures and dislocations of the midffot: Lisfrac and Chopart injuries. J Bone Joint Surg Am, 2012, 18: 1325-1337
[9]
9 Pearce C J, Calder J D. Surgical anatomy of the midfoot. Knee Surg Sports Traumatol Arthrosc, 2010, 18: 581-586
[10]
10 Makwana N K, van Lifefland M R. Injuries of the midfoot. Curr Orthopaed, 2005, 19: 231-242
12 Cheung J T M, Zhang M, Leung A K L, et al. Three-dimensional finite element analysis of the foot during standing: a material sensitivity study. J Biomech, 2005, 38: 1045-1054
[13]
13 Cheung J T M, An K N, Zhang M. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int, 2006, 27: 125-132
[14]
14 Cheung J T M, Zhang M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med Eng Phys, 2008, 30: 269-277
[15]
15 Huang RH, Li XP, Rong QG. Control mechanism for the upper airway collapse in patients with obstructive sleep apnea syndrome: a finite element study. Sci China Life Sci, 2013, 56: 366-372
[16]
16 Athansiou K A, Niederauer G G, Schenck R C Jr. Biomechanical topography of human ankle cartilage. Ann Biomed Eng, 1995, 23: 697-704
[17]
17 Athansiou K A, Fleischli J G, Bosma J, et al. Effects of diabetes mellitus on the biomechanical properties of human ankle cartilage. Clin Orthop Relat Res, 1999, 368: 182-189
[18]
18 Athansiou K A, Liu G T, Lavery L A, et al. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin Orthop Relat Res, 1998, 348: 269-291
[19]
19 Liu G T, Lavery L A, Schenck R C Jr, et al. Human articular cartilage biomechanics of the second metatarsal intermediate cuneiform joint. J Foot Ankle Surg, 1997, 36: 367-374
[20]
20 Siegler S, Block J, Schneck C D. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle, 1988, 8: 234-242
[21]
21 Minns R J, Hunter J A. The mechanical and structural characteristics of the tibio-fibular interosseous membrane. Acta Orthop Scand, 1976, 47: 236-240
[22]
22 Pavan P G, Stecco C, Darwish S, et al. Investigation of the mechanical properties of the plantar aponeurosis. Surg Radiol Anat, 2011, 33: 905-911
[23]
23 Mkandawire C, Ledoux W R, Sangeorzan B J, et al. Foot and ankle ligament morphometry. J Rehabil Res Dev, 2005, 42: 809-820
[24]
24 Spears I R, Miller-Young J E, Waters M, et al. The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc, 2005, 37: 1030-1065
[25]
25 Rodgers M M. Dynamic biomechanics of the normal foot and ankle during walking and running. Phys Ther, 1988, 68: 1822-1830
[26]
26 Lin Y C, Dorn T W, Schache A G, et al. Comparison of different methods for estimating muscle forces in human movement. Proc Inst Mech Eng H, 2012, 226: 103-112
[27]
27 Martinelli N, Marinozzi A, Schulze M, et al. Effect of subtalar arthroereisis on the tibiotalar contact characteristics in a cadaveric flatfoot model. J Biomech, 2012, 45: 1745-1748
[28]
28 Wang C L, Cheng C K, Chen C W, et al. Contact areas and pressure distributions in the subtalar joint. J Biomech, 1995, 28: 269-279
[29]
29 Jung H G, Parks B G, Nguyen A, et al. Effect of tibiotalar joint arthrodesis on adjacent tarsal joint pressure in a cadaver model. Foot Ankle Int, 2007, 28: 103-108
[30]
30 Thomas J L, Moeini R, Doileau R. The effect on subtalar contact and pressure following talonavicular and midtarsal joint arthrodesis. J Foot Ankle Surg, 2000, 39: 78-88
[31]
31 Momberger N, Morgan J M, Bachus K N, et al. Calcaneocuboid joint pressure after lateral column lengthening in a cadaveric planovalgus deformity model. Foot Ankle Int, 2000, 21: 730-735
[32]
32 Lakin R C, Degnore L T, Pienkowski D. Contact mechanics of normal tarsometatarsal joints. J Bone Joint Surg Am, 2001, 83: 520-528
[33]
33 Schneider T, Dabirrahmani D, Gillies R M, et al. Biomechanical comparison of metatarsal head designs in first metatarsophalangeal joint arthroplasty. Foot Ankle Int, 2013, 34: 881-889
[34]
34 Ward K N, Soames R W. Contact patterns at the tarsal joints. Clin Biomech, 1997, 12: 496-507
[35]
35 Keaveny T M, Wachtel E F, Ford C M, et al. Differences between the tensile and compressive strengths of bovine tibial trabecular depend on modulus. J Biomech, 1994, 27: 1137-1146
[36]
36 Bayrakrar H H, Morgan E F, Niebur G L, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech, 2004, 37: 27-35