1 Hartwell L H. Genetic control of cell division cycle in yeast IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res, 1971, 69: 265-276
[2]
2 Byers B, Goetsch L. Highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol, 1976, 69: 717-721
[3]
36 Surka M C, Tsang C W, Trimble W S. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell, 2002, 13: 3532-3545
[4]
37 Nagata K, Kawajiri A, Matsui S, et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem, 2003, 278: 18538-18543
[5]
38 Kremer B E, Haystead T, Macara I G. Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell, 2005, 16: 4648-4659
[6]
39 Bowen J R, Hwang D, Bai X, et al. Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia. J Cell Biol, 2011, 194: 187-197
[7]
40 Maimaitiyiming M, Kobayashi Y, Kumanogoh H, et al. Identification of dynamin as a septin-binding protein. Neurosci Lett, 2013, 534: 322-326
[8]
41 Zhang J, Kong C, Xie H, et al. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol, 1999, 9: 1458-1467
[9]
42 Bertin A, McMurray M A, Pierson J, et al. Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol Biol Cell, 2012, 23: 423-432
[10]
43 Bertin A, McMurray M A, Thai L, et al. Phosphatidylinositol-4, 5-bisphosphate promotes budding yeast septin filament assembly and organization. J Mol Biol, 2010, 404: 711-731
[11]
44 Tanaka-Takiguchi Y, Kinoshita M, Takiguchi K. Septin-mediated uniform bracing of phospholipid membranes. Curr Biol, 2009, 19: 140-145
[12]
45 Cid V c J, Jiménez J, Molina M, et al. Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology, 2002, 148: 2647-2659
[13]
46 Kinoshita M. Diversity of septin scaffolds. Curr Opin Cell Biol, 2006, 18: 54-60
[14]
47 Kinoshita N, Kimura K, Matsumoto N, et al. Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes. Genes Cells, 2004, 9: 1-14
[15]
48 Spiliotis E T, Kinoshita M, Nelson W J. A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science, 2005, 307: 1781-1785
[16]
49 Kremer B E, Adang L A, Macara I G. Septins regulate actin organization and cell-cycle arrest through nuclear accumulation of NCK mediated by SOCS7. Cell, 2007, 130: 837-850
[17]
50 Kinoshita M, Takeda S. Connecting the dots between septins and the DNA damage checkpoint. Cell, 2007, 130: 777-779
[18]
51 Dobbelaere J, Barral Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science, 2004, 305: 393-396
[19]
52 Takizawa P A, DeRisi J L, Wilhelm J E, et al. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science, 2000, 290: 341-344
[20]
53 Luedeke C, Frei S B, Sbalzarini I, et al. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J Cell Biol, 2005, 169: 897-908
[21]
54 Kissel H, Georgescu M, Larisch S, et al. The Sept4 septin locus is required for sperm terminal differentiation in Mice. Dev Cell, 2005, 8: 353-364
[22]
69 Amin N D, Zheng Y L, Kesavapany S, et al. Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J Neurosci, 2008, 28: 3631-3643
[23]
70 Beites C, Campbell K, Trimble W. The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J, 2005, 385: 347-353
[24]
71 Dent J, Kato K, Peng XR, et al. A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci USA, 2002, 99: 3064-3069
[25]
83 Silverman-Gavrila RV, Silverman-Gavrila LB. Septins: new microtubule interacting partners. Sci World J, 2008, 8: 611-620
[26]
3 Haarer B K, Pringle J R. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol Cell Biol, 1987, 7: 3678-3687
[27]
4 Kim H B, Haarer B K, Pringle J R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J Cell Biol, 1991, 112: 535-544
[28]
5 Ford S K, Pringle J R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Dev Genet, 1991, 12: 281-292
[29]
6 Russell S E, Hall P A. Septin genomics: a road less travelled. Biol Chem, 2011, 392: 763-767
[30]
7 Peng X R, Jia Z, Zhang Y, et al. The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol Cell Biol, 2002, 22: 378-387
[31]
8 Yu W B. Research progresses on septin family. Hereditas (Beijing), 2009, 30: 1097-1107
[32]
9 Bertin A, McMurray M A, Grob P, et al. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci USA, 2008, 105: 8274-8279
[33]
10 John C M, Hite R K, Weirich C S, et al. The Caenorhabditis elegans septin complex is nonpolar. The EMBO Journal, 2007, 26: 3296-3307
[34]
11 Sirajuddin M, Farkasovsky M, Hauer F, et al. Structural insight into filament formation by mammalian septins. Nature, 2007, 449: 311-315
[35]
12 Kim M S, Froese C D, Estey M P, et al. SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol, 2011, 195: 815-826
[36]
13 Sellin M E, Stenmark S, Gullberg M. Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers. Mol Biol Cell, 2012, 23: 4242-4255
[37]
14 Kinoshita M, Field C M, Coughlin M L, et al. Self-and actin-templated assembly of mammalian septins. Dev Cell, 2002, 3: 791-802
[38]
15 Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol, 2012, 13: 183-194
[39]
16 Chant J. Septin scaffolds and cleavage planes in Saccharomyces. Cell, 1996, 84: 187-190
[40]
17 Vrabioiu A M, Mitchison T J. Structural insights into yeast septin organization from polarized fluorescence microscopy. Nature, 2006, 443: 466-469
[41]
18 Sellin M E, Holmfeldt P, Stenmark S, et al. Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells. Mol Biol Cell, 2011, 22: 4588-4601
[42]
19 Sirajuddin M, Farkasovsky M, Zent E, et al. GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci USA, 2009, 106: 16592-16597
[43]
20 Tang C, Reed S. Phosphorylation of the septin cdc3 in g1 by the cdc28 kinase is essential for efficient septin ring disassembly. Cell Cycle, 2002, 1: 42-49
[44]
21 Dobbelaere J, Gentry M S, Hallberg R L, et al. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev Cell, 2003, 4: 345-357
[45]
22 Sinha I, Wang Y M, Philp R, et al. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Dev Cell, 2007, 13: 421-432
[46]
23 Chi A, Huttenhower C, Geer L Y, et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA, 2007, 104: 2193-2198
[47]
24 Garcia G, Bertin A, Li Z, et al. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J Cell Biol, 2011, 195: 993-1004
[48]
25 Takahashi Y, Iwase M, Konishi M, et al. Smt3, a SUMO-1 homolog, is conjugated to Cdc3, a component of septin rings at the mother-bud neck in budding yeast. Biochem Biophys Res Commun, 1999, 259: 582-587
[49]
26 Johnson E S, Blobel G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol, 1999, 147: 981-994
[50]
27 Johnson E S, Gupta A A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 2001, 106: 735-744
[51]
28 Ho C W, Chen H T, Hwang J. UBC9 autosumoylation negatively regulates sumoylation of septins in Saccharomyces cerevisiae. J Biol Chem, 2011, 286: 21826-21834
[52]
29 Zhang Y, Gao J, Chung K K, et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA, 2000, 97: 13354-13359
[53]
30 Mitchell L, Lau A, Lambert J P, et al. Regulation of septin dynamics by the Saccharomyces cerevisiae lysine acetyltransferase NuA4. PLoS One, 2011, 6: e25336
[54]
31 Joberty G, Perlungher R R, Sheffield P J, et al. Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol, 2001, 3: 861-866
[55]
32 Joo E, Surka M C, Trimble W S. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev Cell, 2007, 13: 677-690
[56]
33 Oegema K, Savoian M S, Mitchison T J, et al. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol, 2000, 150: 539-551
[57]
34 Saarikangas J, Barral Y. The emerging functions of septins in metazoans. Embo Reports, 2011, 12: 1118-1126
[58]
35 Mavrakis M, Azou-Gros Y, Tsai F C, et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol, 2014, 16: 322-334
[59]
55 Ihara M, Kinoshita A, Yamada S, et al. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell, 2005, 8: 343-352
[60]
56 Hu Q, Milenkovic L, Jin H, et al. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science, 2010, 329: 436-439
[61]
57 Chih B, Liu P, Chinn Y, et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol, 2012, 14: 61-72
[62]
58 Spiliotis E T, Hunt S J, Hu Q, et al. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J Cell Biol, 2008, 180: 295-303
[63]
59 Kim S K, Shindo A, Park T J, et al. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science, 2010, 329: 1337-1340
[64]
60 Gilden J K, Peck S, Chen Y M, et al. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J Cell Biol, 2012, 196: 103-114
[65]
61 Tooley A J, Gilden J, Jacobelli J, et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol, 2009, 11: 17-26
[66]
62 Shindo A, Wallingford J B. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science, 2014, 343: 649-652
[67]
63 Tada T, Simonetta A, Batterton M, et al. Role of septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol, 2007, 17: 1752-1758
[68]
64 Xie Y, Vessey J P, Konecna A, et al. The GTP-binding protein Septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr Biol, 2007, 17: 1746-1751
[69]
65 Cho S J, Lee H, Dutta S, et al. Septin 6 regulates the cytoarchitecture of neurons through localization at dendritic branch points and bases of protrusions. Mol Cells, 2011, 32: 89-98
[70]
66 Hu J, Bai X, Bowen J R, et al. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol, 2012, 22: 1109-1115
[71]
67 Ageta-Ishihara N, Miyata T, Ohshima C, et al. Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation. Nat Commun, 2013, 4: 2532
[72]
68 Beites C L, Xie H, Bowser R, et al. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci, 1999, 2: 434-439
[73]
72 Mostowy S, Tham T N, Danckaert A, et al. Septins regulate bacterial entry into host cells. PLoS One, 2009, 4: e4196
[74]
73 Mostowy S, Danckaert A, Tham T N, et al. Septin 11 restricts InlB-mediated invasion by Listeria. J Biol Chem, 2009, 284: 11613-11621
[75]
74 Mostowy S, Bonazzi M, Hamon M A, et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe, 2010, 8: 433-444
[76]
75 Liu M, Shen S, Chen F, et al. Linking the septin expression with carcinogenesis. Mol Biol Rep, 2010, 37: 3601-3608
[77]
76 deVos T, Tetzner R, Model F, et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem, 2009, 55: 1337-1346
[78]
77 Tanzer M, Balluff B, Distler J, et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLos One, 2010, 5: e9061
[79]
78 Church T R, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut, 2014, 63: 317-325
[80]
79 Engmann O, Hortobagyi T, Thompson A J, et al. Cyclin-dependent kinase 5 activator p25 is generated during memory formation and is reduced at an early stage in Alzheimer’s Disease. Biol Psychiatry, 2011, 70: 159-168
[81]
80 Kuhlenbaumer G, Hannibal M C, Nelis E, et al. Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet, 2005, 37: 1044-1046
[82]
81 Laccone F, Hannibal M C, Neesen J, et al. Dysmorphic syndrome of hereditary neuralgic amyotrophy associated with a SEPT9 gene mutation—a family study. Clin Genet, 2008, 74: 279-283
[83]
82 Chao H C A, Lin Y H, Kuo Y C, et al. The expression pattern of SEPT7 correlates with sperm morphology. J Assist Reprod Genet, 2010, 27: 299-307