1 Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature, 1980, 287: 795-801
[2]
2 Nusslein-Volhard C, Lohs-Schardin M, Sander K, et al. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature, 1980, 283: 474-476
[3]
3 Anderson K V, Nusslein-Volhard C. Information for the dorsal-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature, 1984, 311: 223-227
[4]
4 Anderson K V, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the toll gene product. Cell, 1985, 42: 791-798
[5]
5 Driever W, Nusslein-Volhard C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell, 1988, 54: 95-104
[6]
6 Schupbach T, Wieschaus E. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol, 1986, 113: 443-448
[7]
7 Nusslein-Volhard C, Frohnhofer HG, Lehmann R. Determination of anteroposterior polarity in Drosophila. Science, 1987, 238:1675-1681
[8]
8 Tong Z B, Gold L, Pfeifer K E, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet, 2000,26: 267-268
[9]
9 Li L, Zheng P, Dean J. Maternal control of early mouse development. Development, 2010, 137: 859-870
[10]
10 Zheng W, Liu K. Maternal control of mouse preimplantation development. Results Probl Cell Differ, 2012, 55: 115-139
[11]
11 Mullins M C, Hammerschmidt M, Haffter P, et al. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol, 1994, 4: 189-202
[12]
12 Haffter P, Nusslein-Volhard C. Large scale genetics in a small vertebrate, the zebrafish. Int J Dev Biol, 1996, 40: 221-227
[13]
13 Driever W, Solnica-Krezel L, Schier A F, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 1996,123: 37-46
[14]
14 Abdelilah S, Solnica-Krezel L, Stainier D Y, et al. Implications for dorsoventral axis determination from the zebrafish mutation janus. Nature, 1994, 370: 468-471
[15]
15 Abdelilah S, Driever W. Pattern formation in janus-mutant zebrafish embryos. Dev Biol, 1997, 184: 70-84
[16]
16 Pelegri F, Dekens M P, Schulte-Merker S, et al. Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn, 2004, 231: 324-335
[17]
17 Dosch R, Wagner D S, Mintzer K A, et al. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish i. Dev Cell, 2004, 6: 771-780
[18]
18 Wagner D S, Dosch R, Mintzer K A, et al. Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish ii. Dev Cell, 2004, 6: 781-790
[19]
19 Marlow F L, Mullins M C. Bucky ball functions in balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol, 2008, 321: 40-50
[20]
20 Cox R T, Spradling A C. Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development, 2006, 133:3371-3377
[21]
21 Jenny A, Hachet O, Zavorszky P, et al. A translation-independent role of oskar RNA in early Drosophila oogenesis. Development, 2006,133: 2827-2833
[22]
22 Bontems F, Stein A, Marlow F, et al. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol, 2009, 19: 414-422
[23]
23 Heim A E, Hartung O, Rothhamel S, et al. Oocyte polarity requires a bucky ball-dependent feedback amplification loop. Development,2014, 141: 842-854
[24]
24 Gupta T, Marlow F L, Ferriola D, et al. Microtubule actin crosslinking factor 1 regulates the balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet, 2010, 6: e1001073
[25]
25 Stricker S A. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol, 1999, 211: 157-176
[26]
26 Sharma D, Kinsey W H. Regionalized calcium signaling in zebrafish fertilization. Int J Dev Biol, 2008, 52: 561-570
[27]
27 Wassarman P M, Litscher E S. Towards the molecular basis of sperm and egg interaction during mammalian fertilization. Cells Tissues Organs, 2001, 168: 36-45
[28]
28 Tsaadon A, Eliyahu E, Shtraizent N, et al. When a sperm meets an egg: block to polyspermy. Mol Cell Endocrinol, 2006, 252: 107-114
[29]
29 Kimmel C B, Ballard W W, Kimmel S R, et al. Stages of embryonic development of the zebrafish. Dev Dyn, 1995, 203: 253-310
[30]
30 Mei W, Lee K W, Marlow F L, et al. hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish. Development,2009, 136: 3007-3017
[31]
31 Yang J, Chan C Y, Jiang B, et al. hnRNP I inhibits notch signaling and regulates intestinal epithelial homeostasis in the zebrafish. PLoS Genet, 2009, 5: e1000363
[32]
32 Kress T L, Yoon Y J, Mowry K L. Nuclear RNP complex assembly initiates cytoplasmic RNA localization. J Cell Biol, 2004, 165:203-211
[33]
33 Lewis R A, Kress T L, Cote C A, et al. Conserved and clustered RNA recognition sequences are a critical feature of signals directing RNA localization in xenopus oocytes. Mech Dev, 2004, 121: 101-109
[34]
34 Nair S, Marlow F, Abrams E, et al. The chromosomal passenger protein birc5b organizes microfilaments and germ plasm in the zebrafish embryo. PLoS Genet, 2013, 9: e1003448
[35]
35 Extavour C G, Akam M. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development, 2003,130: 5869-5884
[36]
36 Dekens M P, Pelegri F J, Maischein H M, et al. The maternal-effect gene futile cycle is essential for pronuclear congression and mitotic spindle assembly in the zebrafish zygote. Development, 2003, 130: 3907-3916
[37]
37 Lindeman R E, Pelegri F. Localized products of futile cycle/lrmp promote centrosome-nucleus attachment in the zebrafish zygote. Curr Biol, 2012, 22: 843-851
[38]
38 Abrams E W, Mullins M C. Early zebrafish development: it''s in the maternal genes. Curr Opin Genet Dev, 2009, 19: 396-403
[39]
39 Yabe T, Ge X, Lindeman R, et al. The maternal-effect gene cellular island encodes aurora β kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet, 2009, 5: e1000518
[40]
40 Yabe T, Ge X, Pelegri F. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication. Dev Biol, 2007, 312: 44-60
[41]
41 Tadros W, Lipshitz H D. The maternal-to-zygotic transition: a play in two acts. Development, 2009, 136: 3033-3042
[42]
42 Giraldez A J, Mishima Y, Rihel J, et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 2006,312: 75-79
[43]
43 Lund E, Liu M, Hartley R S, et al. Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA, 2009, 15:2351-2363
[44]
44 Lee M T, Bonneau A R, Takacs C M, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013, 503: 360-364
[45]
45 Brown J L, Sonoda S, Ueda H, et al. Repression of the Drosophila fushi tarazu (ftz) segmentation gene. EMBO J, 1991, 10: 665-674
[46]
46 Stancheva I, Meehan RR. Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev, 2000, 14:313-327
[47]
47 Wu D, Chen L, Sun Q, et al. Uracil-DNA glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. J Biol Chem, 2014, 289: 15463-15473
[48]
48 Leichsenring M, Maes J, Mossner R, et al. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science, 2013, 341:1005-1009
[49]
49 Gore A V, Maegawa S, Cheong A, et al. The zebrafish dorsal axis is apparent at the four-cell stage. Nature, 2005, 438: 1030-1035
[50]
50 Mizuno T, Yamaha E, Kuroiwa A, et al. Removal of vegetal yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech Dev, 1999, 81: 51-63
[51]
51 Lu F I, Thisse C, Thisse B. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc Natl Acad Sci USA,2011, 108: 15876-15880
[52]
52 Wylie A D, Fleming J A, Whitener A E, et al. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev Biol, 2014, 386: 53-63
[53]
53 Kelly C, Chin A J, Leatherman J L, et al. Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development, 2000, 127: 3899-3911
[54]
54 Nojima H, Shimizu T, Kim C H, et al. Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mech Dev, 2004, 121: 371-386
[55]
55 Lyman Gingerich J, Westfall T A, Slusarski D C, et al. Hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Dev Biol, 2005, 286: 427-439
[56]
56 Bellipanni G, Varga M, Maegawa S, et al. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development, 2006, 133: 1299-1309
[57]
57 Langdon Y G, Mullins M C. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet, 2011, 45: 357-377
[58]
58 Xu P, Zhu G, Wang Y, et al. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol, 2014,
[59]
59 Mintzer K A, Lee M A, Runke G, et al. Lost-a-fin encodes a type I BMP receptor, Alk8, acting maternally and zygotically in dorsoventral pattern formation. Development, 2001, 128: 859-869
[60]
60 Bauer H, Lele Z, Rauch G J, et al. The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development, 2001, 128: 849-858
[61]
61 Dick A, Hild M, Bauer H, et al. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development, 2000, 127: 343-354
[62]
62 Kishimoto Y, Lee K H, Zon L, et al. The molecular nature of zebrafish swirl: Bmp2 function is essential during early dorsoventral patterning. Development, 1997, 124: 4457-4466
[63]
63 Hild M, Dick A, Rauch G J, et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development, 1999, 126: 2149-2159
[64]
64 Yabe T, Shimizu T, Muraoka O, et al. Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development,2003, 130: 2705-2716
[65]
65 Martyn U, Schulte-Merker S. The ventralized ogon mutant phenotype is caused by a mutation in the zebrafish homologue of Sizzled, a secreted Frizzled-related protein. Dev Biol, 2003, 260: 58-67
[66]
66 Rissi M, Wittbrodt J, Delot E, et al. Zebrafish Radar: a new member of the TGF-beta superfamily defines dorsal regions of the neural plate and the embryonic retina. Mech Dev, 1995, 49: 223-234
[67]
67 Sidi S, Goutel C, Peyrieras N, et al. Maternal induction of ventral fate by zebrafish radar. Proc Natl Acad Sci USA, 2003, 100: 3315-3320
[68]
68 Veenstra GJ, van der Vliet PC, Destree OH. POU domain transcription factors in embryonic development. Mol Biol Rep, 1997, 24:139-155
[69]
70 Khan A, Nakamoto A, Okamoto S, et al. Pou2, a class V POU-type transcription factor in zebrafish, regulates dorsoventral patterning and convergent extension movement at different blastula stages. Mech Dev, 2012, 129: 219-235
[70]
71 Shimizu T, Yamanaka Y, Nojima H, et al. A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mech Dev, 2002, 118: 125-138
[71]
72 Leung T, Bischof J, Soll I, et al. Bozozok directly represses Bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development, 2003, 130: 3639-3649
[72]
73 Dal-Pra S, Furthauer M, Van-Celst J, et al. Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol, 2006, 298: 514-526
[73]
90 Slagle C E, Aoki T, Burdine R D. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin. PLoS Genet, 2011, 7: e1002072
[74]
91 Lustig K D, Kroll K L, Sun E E, et al. Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation. Development, 1996, 122: 4001-4012
[75]
92 Zhang J, King M L. Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development, 1996, 122: 4119-4129
[76]
93 Zhang J, Houston D W, King M L, et al. The role of maternal VegT in establishing the primary germ layers in xenopus embryos. Cell,1998, 94: 515-524
[77]
94 Clements D, Woodland H R. VegT induces endoderm by a self-limiting mechanism and by changing the competence of cells to respond to tgf-beta signals. Dev Biol, 2003, 258: 454-463
[78]
95 Kofron M, Demel T, Xanthos J, et al. Mesoderm induction in xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development, 1999, 126: 5759-5770
[79]
96 Xanthos J B, Kofron M, Tao Q, et al. The roles of three signaling pathways in the formation and function of the spemann organizer. Development, 2002, 129: 4027-4043
[80]
97 Bruce A E, Howley C, Zhou Y, et al. The maternally expressed zebrafish T-box gene eomesodermin regulates organizer formation. Development, 2003, 130: 5503-5517
[81]
98 Du S, Draper B W, Mione M, et al. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev Biol,2012, 362: 11-23
[82]
99 Bjornson C R, Griffin K J, Farr G H 3rd, et al. Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Dev Cell, 2005, 9: 523-533
[83]
69 Reim G, Brand M. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development, 2006, 133: 2757-2770
[84]
74 Yamamoto Y, Oelgeschlager M. Regulation of bone morphogenetic proteins in early embryonic development. Naturwissenschaften, 2004, 91: 519-534
[85]
75 Kimelman D. Mesoderm induction: from caps to chips. Nat Rev Genet, 2006, 7: 360-372
[86]
76 Tian T, Meng A M. Nodal signals pattern vertebrate embryos. Cell Mol Life Sci, 2006, 63: 672-685
[87]
77 Shen M M. Nodal signaling: developmental roles and regulation. Development, 2007, 134: 1023-1034
[88]
78 Zhou X, Sasaki H, Lowe L, et al. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature, 1993, 361:543-547
[89]
79 Jones C M, Kuehn M R, Hogan B L, et al. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development, 1995, 121: 3651-3662
[90]
80 Agius E, Oelgeschlager M, Wessely O, et al. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development, 2000,127: 1173-1183
[91]
81 Feldman B, Gates M A, Egan E S, et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature,1998, 395: 181-185
[92]
82 Lim S, Kumari P, Gilligan P, et al. Dorsal activity of maternal squint is mediated by a non-coding function of the RNA. Development,2012, 139: 2903-2915
[93]
83 Kumari P, Gilligan P C, Lim S, et al. An essential role for maternal control of Nodal signaling. Elife, 2013, 2: e00683
[94]
84 Chen Y, Schier A F. Lefty proteins are long-range inhibitors of squint-mediated Nodal signaling. Curr Biol, 2002, 12: 2124-2128
[95]
85 Zhang J, Talbot W S, Schier A F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell, 1998, 92: 241-251
[96]
86 Gritsman K, Zhang J, Cheng S, et al. The EGF-CFC protein one-eyed pinhead is essential for Nodal signaling. Cell, 1999, 97: 121-132
[97]
87 Pogoda H M, Solnica-Krezel L, Driever W, et al. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol, 2000, 10: 1041-1049
[98]
88 Sirotkin H I, Gates M A, Kelly P D, et al. Fast1 is required for the development of dorsal axial structures in zebrafish. Curr Biol, 2000, 10:1051-1054
[99]
89 Kunwar P S, Zimmerman S, Bennett J T, et al. Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development, 2003, 130: 5589-5599