1 Gasser S M, Cockell M M. The molecular biology of the SIR proteins. Gene, 2001, 279: 1-16
[2]
2 Frye R A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun, 1999, 260: 273-279
[3]
3 Luo J, Nikolaev A Y, Imai S, et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell, 2001, 107: 137-148
[4]
4 Vaziri H, Dessain S K, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001, 107: 149-159
6 Guarente L, Franklin H. Epstein Lecture: sirtuins, aging, and medicine. New Engl J Med, 2011, 364: 2235-2244
[7]
8 Herranz D, Munoz-Martin M, Canamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun, 2010, 1: 3
[8]
9 Pfluger P T, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA, 2008, 105: 9793-9798
[9]
10 Sakamoto J, Miura T, Shimamoto K, et al. Predominant expression of Sir2a, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett, 2004, 556: 281-286
[10]
11 Cheng H L, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA, 2003, 100: 10794-10799
[11]
12 Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev, 2007, 21: 2644-2658
[12]
13 Wen L, Chen Z, Zhang F, et al. Ca2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin1 in endothelium is atheroprotective. Proc Natl Acad Sci USA, 2013, 110: E2420-E2427
[13]
14 Zhang Q J, Wang Z, Chen H Z, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res, 2008, 80: 191-199
[14]
15 Gorenne I, Kumar S, Gray K, et al. Vascular smooth muscle cell sirtuin1 protects against DNA damage and inhibits atherosclerosis. Circulation, 2013, 127: 386-396
[15]
16 Stein S, Lohmann C, Schafer N, et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J, 2010, 31: 2301-2309
[16]
17 Zhou S, Chen H Z, Wan Y Z, et al. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res, 2011, 109: 639-648
[17]
18 Li L, Zhang H N, Chen H Z, et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res, 2011, 108: 1180-1189
[18]
19 Alcendor R R, Kirshenbaum L A, Imai S, et al. Silent information regulator 2a, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res, 2004, 95: 971-980
[19]
20 Pillai J B, Isbatan A, Imai S, et al. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2a deacetylase activity. J Biol Chem, 2005, 280: 43121-43130
[20]
21 Zheng W, Lu Y B, Liang S T, et al. SIRT1 mediates the protective function of Nkx2.5 during stress in cardiomyocytes. Basic Res Cardiol, 2013, 108: 364
[21]
22 Alcendor R R, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res, 2007, 100: 1512-1521
[22]
23 Planavila A, Iglesias R, Giralt M, et al. Sirt1 acts in association with PPARa to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res, 2011, 90: 276-284
[23]
24 Oka S, Alcendor R, Zhai P, et al. PPARa-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab, 2011, 14: 598-611
[24]
25 Shalwala M, Zhu S G, Das A, et al. Sirtuin1 (SIRT1) activation mediates sildenafil induced delayed cardioprotection against ischemia-reperfusion injury in mice. PLoS One, 2014, 9: e86977
[25]
7 Haigis M C, Sinclair D A. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol, 2010, 5: 253-295
[26]
26 Rohrbach S, Aslam M, Niemann B, et al. Impact of caloric restriction on myocardial ischemia/reperfusion injury and new therapeutic options to mimic its effects. Brit J Pharmacol, 2014, 171: 2964-2992
[27]
27 Hsu C P, Zhai P, Yamamoto T, et al. Silent information regulator1 protects the heart from ischemia/reperfusion. Circulation, 2010, 122: 2170-2182
[28]
28 Mattagajasingh I, Kim C S, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA, 2007, 104: 14855-14860
[29]
29 Guarani V, Deflorian G, Franco C A, et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature, 2011, 473: 234-238
[30]
30 Zu Y, Liu L, Lee M Y, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res, 2010, 106: 1384-1393
[31]
31 Barbosa M T, Soares S M, Novak C M, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. Faseb J, 2007, 21: 3629-3639
[32]
32 Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun, 2003, 301: 250-257
[33]
33 Gulick J, Subramaniam A, Neumann J, et al. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem, 1991, 266: 9180-9185
[34]
34 Chen H, Yong W, Ren S, et al. Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. J Biol Chem, 2006, 281: 27481-27491
[35]
35 Li H L, Zhuo M L, Wang D, et al. Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation, 2007, 115: 1885-1894
[36]
36 Zhang Q J, Chen H Z, Wang L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest, 2011, 121: 2447-2456
[37]
37 Planavila A, Dominguez E, Navarro M, et al. Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell Cardiol, 2012, 53: 521-531
[38]
38 Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. New Engl J Med, 1996, 335: 1182-1189
[39]
39 Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest, 2003, 111: 1497-1504
[40]
40 Tang Y, Zhao W, Chen Y, et al. Acetylation is indispensable for p53 activation. Cell, 2008, 133: 612-626
[41]
41 Zhang C, Feng Y, Qu S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res, 2011, 90: 538-545
[42]
42 Nakano K, Vousden K H. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell, 2001, 7: 683-694
[43]
43 Luo X, He Q, Huang Y, et al. Transcriptional upregulation of PUMA modulates endoplasmic reticulum calcium pool depletion-induced apoptosis via Bax activation. Cell Death Differ, 2005, 12: 1310-1318
[44]
44 Sin T K, Yu A P, Yung B Y, et al. Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol, 2014, doi: 10.1113/jphysiol.2014.271387