全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有无反馈对欺骗过程的神经机制的调控作用

DOI: 10.1360/052013-59, PP. 938-950

Keywords: 欺骗结果,欺骗过程,神经机制,功能核磁共振

Full-Text   Cite this paper   Add to My Lib

Abstract:

欺骗行为会导致欺骗结果的产生,欺骗结果又会直接影响欺骗行为的发生及其内在机制.虽然有研究表明,欺骗结果会对相应的欺骗过程产生调控作用,但对这一调控作用的机制并不清楚.本研究采用功能核磁共振技术,对两组被试分别使用有、无反馈(欺骗结果)的GKT范式并记录两组被试在进行诚实反应和欺骗反应时的大脑激活模式.结果发现,有反馈组与无反馈组相比,有反馈组的诚实反应和欺骗反应都导致了左侧顶叶皮层、左背部前扣带皮层、左侧脑岛、双侧视皮层和右侧小脑的更大激活;对两组而言,欺骗反应和诚实反应都导致了右腹外侧前额区域、双侧缘上回、左侧脑岛、右后内侧额叶、右侧颞中回和右侧纹状体的更大激活;此外,与无反馈组相比,有反馈组的欺骗反应与诚实反应在双侧纹状体和左侧脑岛上的激活差异更加明显.这些结果表明,有无欺骗结果对欺骗过程的神经机制具有调控作用,当需要面临欺骗结果时,欺骗过程将更大程度地涉及到奖赏预期和风险厌恶过程的参与.

References

[1]  1 Abe N. How the brain shapes deception. Neuroscientist, 2011, 17: 560-574
[2]  2 Ford E B. Lie detection: historical, neuropsychiatric and legal dimensions. Int J Law Psychiat, 2006, 29: 159-177
[3]  3 Langleben D D, Schroeder L, Maldjian J A, et al. Brain activity during simulated deception: an event-related functional magnetic resonance study. NeuroImage, 2002, 15: 727-732
[4]  4 Spence S A, Farrow T F D, Herford A E, et al. Behavioural and functional anatomical correlates of deception in humans. Neuroreport, 2001, 12: 2849-2853
[5]  5 Lee T M C, Liu H L, Tan L H, et al. Lie detection by functional magnetic resonance imaging. Hum Brain Mapp, 2002, 15: 157-164
[6]  6 Ganis G, Morris R R, Kosslyn S M. Neural processes underlying self-and other-related lies: an individual difference approach using fMRI. Soc Neurosci, 2009, 4: 539-553
[7]  7 Abe N, Suzuki M, Tsukiura T, et al. Dissociable roles of prefrontal and anterior cingulate cortices in deception. Cereb Cortex, 2006, 16: 192-199
[8]  8 Abe N, Suzuki M, Mori E, et al. Deceiving others: distinct neural responses of the prefrontal cortex and amygdala in simple fabrication and deception with social interactions. J Cogn Neurosci, 2007, 19: 287-295
[9]  9 Ganis G, Kosslyn S M, Stose S, et al. Neural correlates of different types of deception: an fMRI investigation. Cereb Cortex, 2003, 13: 830-836
[10]  10 Nunez J M, Casey B, Egner T, et al. Intentional false responding shares neural substrates with response conflict and cognitive control. NeuroImage, 2005, 25: 267-277
[11]  11 Abe N, Okuda J, Suzuki M, et al. Neural correlates of true memory, false memory, and deception. Cereb Cortex, 2008, 18: 2811-2819
[12]  12 Lee T M C, Au R K C, Liu H L, et al. Are errors differentiable from deceptive responses when feigning memory impairment? An fMRI study. Brain Cogn, 2009, 69: 406-412
[13]  13 Gamer M, Klimecki O, Bauermann T, et al. fMRI-activation patterns in the detection of concealed information rely on memory-related effects. Soc Cogn Affect Neurosci, 2012, 7: 506-515
[14]  14 Nose I, Murai J, Taira M. Disclosing concealed information on the basis of cortical activations. NeuroImage, 2009, 44: 1380-1386
[15]  38 Lee W, Reeve J. Self-determined, but not non-self-determined, motivation predicts activations in the anterior insular cortex: an fMRI study of personal agency. Soc Cogn Affect Neurosci, 2013, 8: 538-545
[16]  39 Ivanov I, Liu X, Clerkin S, et al. Effects of motivation on reward and attentional networks: an fMRI study. Brain Behav, 2012: 741-753
[17]  40 Kozel F A, Johnson K A, Mu Q, et al. Detecting deception using functional magnetic resonance imaging. Biol Psychiat, 2005, 58: 605-613
[18]  41 Kozel F A, Laken S J, Johnson K A, et al. Replication of functional MRI detection of deception. Open Forensic Sci J, 2009, 2: 6-11
[19]  42 Kozel F A, Johnson K A, Grenesko E L, et al. Functional MRI detection of deception after committing a mock sabotage crime. J Forensic Sci, 2009, 54: 220-231
[20]  43 Langleben D D, Loughead J W, Bilker W B, et al. Telling truth from lie in individual subjects with fast event-related fMRI. Hum Brain Mapp, 2005, 26: 262-272
[21]  44 Paulus M P, Rogalsky C, Simmons A, et al. Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. NeuroImage, 2003, 19: 1439-1448
[22]  45 Rudorf S, Preuschoff K, Weber B. Neural correlates of anticipation risk reflect risk preferences. J Neurosci, 2012, 32: 16683-16692
[23]  46 Beck A, Schlagenhauf F, Wüstenberg T, et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiat, 2009, 66: 734-742
[24]  47 Dichter G S, Felder J N, Green S R, et al. Reward circuitry function in autism spectrum disorders. Soc Cogn Affect Neurosci, 2012, 7: 160-172
[25]  48 Hsu M, Krajbich I, Zhao C, et al. Neural response to reward anticipation under risk is nonlinear in probabilities. J Neurosci, 2009, 29: 2231-2237
[26]  49 O''Doherty J P. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol, 2004, 14: 769-776
[27]  50 Rademacher L, Krach S, Kohls G, et al. Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 2010, 49: 3276-3285
[28]  51 Bromberg-Martin E S, Hikosaka O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 2009, 63: 119-126
[29]  52 Morris G, Nevet A, Arkadir D, et al. Midbrain dopamine neurons encode decisions for future action. Nat Neurosci, 2006, 9: 1057-1063
[30]  53 Gamer M, Bauermann T, Stoeter P, et al. Covariations among fMRI, skin conductance, and behavioral data during processing of concealed information. Hum Brain Mapp, 2007, 28: 1287-1301
[31]  54 Hakun J G, Ruparel K, Seelig D, et al. Towards clinical trials of lie detection with fMRI. Soc Neurosci, 2009, 4: 518-527
[32]  55 Kaylor-Hughes C J, Lankappa S T, Fung R, et al. The functional anatomical distinction between truth telling and deception is preserved among people with schizophrenia. Crim Behav Ment Health, 2011, 21: 8-20
[33]  56 Ito A, Abe N, Fujii T, et al. The role of the dorsolateral prefrontal cortex in deception when remembering neutral and emotional events. Neurosci Res, 2011, 69: 121-128
[34]  57 Lee T M C, Lee T M Y, Raine A, et al. Lying about the valence of affective pictures: an fMRI study. PLoS One, 2010, 5: e12291
[35]  58 Bhatt S, Mbwana J, Adeyemo A, et al. Lying about facial recognition: an fMRI study. Brain Cogn, 2009, 69: 382-390
[36]  15 Kozel F A, Padgett T M, George M S. A replication study of the neural correlates of deception. Behav Neurosci, 2004, 118: 852-856
[37]  16 Baumgartner T, Fischbacher U, Feierabend A, et al. The neural circuitry of a broken promise. Neuron, 2009, 64: 756-770
[38]  17 Greene J D, Paxton J M. Patterns of neural activity associated with honest and dishonest moral decisions. Proc Natl Acad Sci USA, 2009, 106: 12506-12511
[39]  18 Fullam R S, McKie S, Dolan M C. Psychopathic traits and deception: functional magnetic resonance imaging study. Brit J Psychiat, 2009, 194: 229-235
[40]  19 Jung K H, Lee J H. Implicit and explicit attitude dissociation in spontaneous deceptive behavior. Acta Psychol, 2009, 132: 62-67
[41]  20 Spence S A, Hunter M D, Farrow T, et al. A cognitive neurobiological account of deception: evidence from functional neuroimaging. Philos Trans R Soc Lond B-Biol Sci, 2004, 359: 1755-1762
[42]  21 Sip K E, Skewes J C, Marchant J L, et al. What if I get busted? Deception, choice, and decision-making in social interaction. Front Neurosci, 2012, 6: 58
[43]  22 Bhatt M A, Lohrenz T, Camerer C F, et al. Neural signatures of strategic types in a two-person bargaining game. Proc Natl Acad Sci USA, 2010, 107: 19720-19725
[44]  23 Sip K E, Roepstorff A, McGregor W, et al. Detecting deception: the scope and limits. Trends Cogn Sci, 2008, 12: 48-53
[45]  24 Bles M, Haynes J D. Detecting concealed information using brain-imaging technology. Neurocase, 2008, 14: 82-92
[46]  25 Ganis G, Rosenfeld J P, Meixner J, et al. Lying in the scanner: covert countermeasures disrupt deception detection by functional magnetic resonance imaging. NeuroImage, 2011, 55: 312-319
[47]  26 Ben-Shakhar G, Elaad E. The validity of psychophysiological detection of information with the Guilty Knowledge Test: a meta-analytic review. J Appl Psychol, 2003, 88: 131-151
[48]  27 Rosenfeld J P, Biroschak J R, Furedy J J. P300-based detection of concealed autobiographical versus incidentally acquired information in target and non-target paradigms. Int J Psychophysiol, 2006, 60: 251-259
[49]  28 Wager T D, Lindquist M, Kaplan L. Meta-analysis of functional neuroimaging data: current and future directions. Soc Cogn Affect Neurosci, 2007, 2: 150-158
[50]  29 Lieberman M D, Cunningham W A. Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci, 2009, 4: 423-428
[51]  30 Abu-Akel A, Shamay-Tsoory S. Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia, 2011, 49: 2971-2984
[52]  31 Sommer M, D?hnel K, Sodian B, et al. Neural correlates of true and false belief reasoning. NeuroImage, 2007, 35: 1378-1384
[53]  32 Swanner J K, Beike D R. Incentives increase the rate of false but not true secondary confessions from informants with an allegiance to a suspect. Law Hum Behav, 2010, 34: 418-428
[54]  33 Poletti M, Enrici I, Adenzato M. Cognitive and affective theory of mind in neurodegenerative diseases: neuropsychological, neuroanatomical and neurochemical levels. Neurosci Biobehav Rev, 2012: 2147-2164
[55]  34 Carruthers P. How we know our own minds: the relationship between mindreading and metacognition. Behav Brain Sci, 2009, 32: 121
[56]  35 Williams D M, Lind S E, Happe F. Metacognition may be more impaired than mindreading in autism. Behav Brain Sci, 2009, 32: 162-163
[57]  36 Happé F. Theory of mind and the self. Ann NY Acad Sci, 2003, 1001: 134-144
[58]  37 Cheng Y, Meltzoff A N, Decety J. Motivation modulates the activity of the human mirror-neuron system. Cereb Cortex, 2007, 17: 1979-1986

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133