5 Troufflard S, Mullen W, Larson T R, et al. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol, 2010, 10: 1-13
[2]
6 Aleman F, Nieves-Cordones M, Martinez V, et al. Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol, 2011, 52: 1603-1612
[3]
7 Epstein E, Rains D, Elzam O. Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA, 1963, 49: 684-692
[4]
18 Zhu Y G, Smolders E. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot, 2000, 51: 1635-1645
[5]
19 Holsters M, de Waele D, Depicker A, et al. Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet, 1978, 163: 181-187
[6]
20 Zhang X, Henriques R, Lin S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006, 1: 641-646
[7]
21 刘敬忠. 3''碱基特异的PCR技术. 国际遗传学杂志, 1991, 6: 286-288
[8]
22 Rubio F, Aleman F, Nieves-Cordones M, et al. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ plus uptake. Physiol Plant, 2010, 139: 220-228
[9]
23 Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575-603
[10]
17 Pyo Y J, Gierth M, Schroeder J I, et al. High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol, 2010, 153: 863-875
[11]
1 Coskun D, Britto D T, Li M, et al. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. Plant Physiol, 2013, 162: 496-511
[12]
2 Maathuis F J M. Physiological functions of mineral macronutrients. Curr Opin Plant Biol, 2009, 12: 250-258
[13]
3 Amtmann A, Armengaud P. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol, 2009, 12: 275-283
[14]
4 Romheld V, Kirkby E A. Research on potassium in agriculture: needs and prospects. Plant Soil, 2010, 335: 155-180
[15]
8 Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant potassium-ion transport-system. Science, 1992, 256: 663-665
[16]
9 Dreyer I, Porée F, Schneider A, et al. Assembly of plant shaker-like Kout channels requires two distinct sites of the channel α-subunit. Biophys J, 2004, 87: 858-872
[17]
10 Fu H H, Luan S. AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell, 1998, 10: 63-73
[18]
11 Kim E J, Kwak J M, Uozumi N, et al. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998, 10: 51-62
[19]
12 Maser P, Thomine S, Schroeder J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol, 2001, 126: 1646-1667
[20]
13 Hong J P, Takeshi Y, Kondou Y, et al. Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol, 2013: 54: 1478-1490
[21]
14 Gierth M, Maser P, Schroeder J I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005, 137: 1105-1114
[22]
15 Rubio F, Nieves-Cordones M, Aleman F, et al. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant, 2008, 134: 598-608
[23]
16 Qi Z, Hampton C R, Shin R, et al. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot, 2008, 59: 595-607