全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玉米中OsAPO1同源序列克隆及其与产量相关性状的关系

DOI: 10.1360/052014-95, PP. 837-844

Keywords: OsAPO1,同源克隆,产量,关联分析,玉米

Full-Text   Cite this paper   Add to My Lib

Abstract:

产量性状是玉米育种的首要目标,但产量相关基因的精细定位与克隆进展缓慢.OsAPO1是水稻中一个控制花序结构的基因,它具有多种功能,既能提高抗倒伏能力又能影响作物的产量.本研究在玉米中克隆了OsAPO1的同源序列ZmAPO1-6和ZmAPO1-9.蛋白多序列比对发现,2个玉米序列和OsAPO1相似性均超过了83%而且都含有F-box结构域.组织特异性表达分析表明,ZmAPO1主要在孕穗期的雌穗中表达.利用近200个自交系与S型细胞质雄性不育系测交构建了关联分析群体,在2个环境下对这2个基因进行了关联分析.在ZmAPO1-6和ZmAPO1-9上分别检测到14和8个与产量相关性状显著关联的位点,其中前者检测到的显著位点主要与株高和茎粗有关,而后者检测到的位点主要与百粒重有关.初步的研究结果推测,OsAPO1在玉米中的2个同源基因可能与产量和产量相关性状有关,该同源基因的克隆和初步分析可为进一步功能研究提供参考.

References

[1]  1 Marsan P A, Gorni C, Chitto A, et al. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet, 2001, 102: 230-243
[2]  2 Zhang G, Wang X, Wang B, et al. Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theor Appl Genet, 2013, 126: 1545-1553
[3]  3 Clark R M, Linton E, Messing J, et al. Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Nat Acad Sci USA, 2004, 101: 700-707
[4]  4 Gallavotti A, Zhao Q, Kyozuka J, et al. The role of barren stalk1 in the architecture of maize. Nature, 2004, 432: 630-635
[5]  5 Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289
[6]  6 Salvi S, Sponza G, Morgante M, et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Nat Acad Sci USA, 2007, 104: 11376-11381
[7]  7 Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 2008, 40: 367-372
[8]  8 Teng F, Zhai L, Liu R, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405-416
[9]  9 高继平, 祁鹏, 林鸿宣. 水稻产量数量性状的遗传调控机制研究进展. 中国科学: 生命科学, 2013, 43: 1007-1015
[10]  10 Ookawa T, Hobo T, Yano M, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun, 2010, 1: 132
[11]  11 Terao T, Nagata K, Morino K, et al. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet, 2010, 120: 875-893
[12]  12 Fu J, Cheng Y, Linghu J, et al. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun, 2013, 4: 2832
[13]  13 Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959
[14]  14 Ikeda K, Ito M, Nagasawa N, et al. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J, 2007, 51: 1030-1040
[15]  15 Samach A, Klenz J E, Kohalmi S E, et al. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J, 1999, 20: 433-445
[16]  16 Davidson R M, Hansey C N, Gowda M, et al. Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome, 2011, 4: 191-203
[17]  17 Bolduc N, Yilmaz A, Mejia-Guerra M K, et al. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev, 2012, 26: 1685-1690
[18]  18 Wang X, Elling A A, Li X, et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell, 2009, 21: 1053-1069
[19]  19 Flint-Garcia S A, Thuillet A C, Yu J, et al. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054-1064
[20]  20 Abler B S B, Edwards M D, Stuber C W. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci, 1991, 31: 267-274
[21]  21 Sch?n C C, Melchinger A E, Boppenmaier J, et al. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 34: 378-389
[22]  22 Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and non-stress environments.1. Grain yield and yield components. Crop Sci, 1996, 36: 1310-1319
[23]  23 齐欢欢, 段利超, 胡伟, 等. 利用导入系群体对玉米产量及产量相关性状进行定位分析. 玉米科学, 2013, 32: 24-27
[24]  24 Feng X, Huang J, Qi H, et al. Identification of heterotic loci for seven yield and yield-related traits in maize with a set of introgression lines. Aust J Crop Sci, 2012, 6: 1661-1665

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133