1 Mendham N, Shipway P, Scott R. The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). J Agr Sci, 1981, 96: 389-416
[2]
2 Bouttier C, Morgan D. Ovule development and determination of seed number per pod in oilseed rape (Brassica napus L.). J Exp Bot, 1992, 43: 709-714
[3]
3 Wang X, Mathieu A, Cournède P H, et al. Stochastic models in floral biology and its application to the study of oilseed rape (Brassica napus L.) fertility. Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). Beijing: IEEE, 2009. 175-182
[4]
4 Charlesworth D. Why do plants produce so many more ovules than seeds. Nature, 1989, 388: 21-22
[5]
5 Pechan P, Morgan D. Defoliation and its effects on pod and seed development in oil seed rape (Brassica napus L.). J Exp Bot, 1985, 36: 458-468
[6]
6 Wang X, Mathieu A, Cournède P H, et al. Variability and regulation of the number of ovules, seeds and pods according to assimilate availability in winter oilseed rape (Brassica napus L.). Field Crops Res, 2011, 122: 60-69
[7]
7 Fukuta N, Fukuzono K, Kawaide H, et al. Physical restriction of pods causes seed size reduction of a brassinosteroid-deficient faba bean (Vicia faba). Ann Bot, 2006, 97: 65-69
[8]
8 Wang X, Li X, Zhang J, et al. Characterization of nine alfalfa varieties for differences in ovule numbers and ovule sterility. Aust J Crop Sci, 2011, 5: 447-452
[9]
9 Huang H Y, Jiang W B, Hu Y W, et al. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant, 2013, 6: 456-469
[10]
10 Pechan P M. Ovule fertilization and seed number per pod determination in oil seed rape (Brassica napus). Ann Bot, 1988, 61: 201-207
[11]
11 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. 166-167
[12]
12 Yano M. Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol, 2001, 4: 130-135
15 Zhang L, Liu P, Hong D, et al. Inheritance of seeds per silique in Brassica napus L. using joint segregation analysis. Field Crops Res, 2010, 116: 58-67
[16]
16 Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics, 2008, 179: 1547-1558
[17]
17 Shi J, Li R, Qiu D, et al. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics, 2009, 182: 851-861
[18]
19 Zhang L, Li S, Chen L, et al. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet, 2012, 125: 695-705
[19]
18 Zhang L, Yang G, Liu P, et al. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet, 2011, 122: 21-31
[20]
20 Pérez-Espa?a V H, Sánchez-León N, Vielle-Calzada J P. CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. Plant Signal Behav, 2011, 6: 321
[21]
21 Wang Z Y, Seto H, Fujioka S, et al. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 2001, 410: 380-383
[22]
22 Hu Y X, Wang Y H, Liu X F, et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14: 8-15
[23]
23 Gendron J M, Wang Z Y. Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol, 2007, 10: 436-441
[24]
24 Kim T W, Guan S, Sun Y, et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol, 2009, 11: 1254-1260
[25]
25 Sun Y, Fan X Y, Cao D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010, 19: 765-777
[26]
26 Tang W, Deng Z, Wang Z Y. Proteomics shed light on the brassinosteroid signaling mechanisms. Curr Opin Plant Biol, 2010, 13: 27-33
[27]
27 Smyth D R, Bowman J L, Meyerowitz E M. Early flower development in Arabidopsis. Plant Cell, 1990, 2: 755-767
[28]
28 Papini A, Mosti S, Milocani E, et al. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae). Protoplasma, 2011, 248: 651-662
[29]
29 Schulz P, Jensen W A. Prefertilization ovule development in Capsella: the dyad, tetrad, developing megaspore, and two-nucleate gametophyte. Can J Bot, 1986, 64: 875-884
[30]
30 Reiser L, Fischer R L. The ovule and the embryo sac. Plant Cell, 1993, 5: 1291
[31]
31 Webb M C, Gunning B E. Embryo sac development in Arabidopsis thaliana. Sex Plant Reprod, 1990, 3: 244-256
33 Christensen C A, King E J, Jordan J R, et al. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod, 1997, 10: 49-64
[34]
34 Van Went J, Cresti M. Pre-fertilization degeneration of both synergids in Brassica campestris ovules. Sex Plant Reprod, 1988, 1: 208-216
[35]
35 Acosta-García G, Vielle-Calzada J P. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell, 2004, 16: 2614-2628
[36]
36 Kim T W, Hwang J Y, Kim Y S, et al. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell, 2005, 17: 2397-2412
[37]
37 Goda H, Shimada Y, Asami T, et al. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 2002, 130: 1319-1334
[38]
38 Tang W, Yuan M, Wang R, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol, 2011, 13: 124-131
[39]
39 Ballesteros I, Domínguez T, Sauer M, et al. Specialized functions of the PP2A subfamily II catalytic subunits PP2A-C3 and PP2A-C4 in the distribution of auxin fluxes and development in Arabidopsis. Plant J, 2013, 73: 862-872
[40]
40 Wang Z Y, Nakano T, Gendron J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002, 2: 505-513
[41]
41 Banco? S, Nomura T, Sato T, et al. Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol, 2002, 130: 504-513
[42]
42 Pischke M S, Jones L G, Otsuga D, et al. An Arabidopsis histidine kinase is essential for megagametogenesis. Proc Natl Acad Sci USA, 2002, 99: 15800-15805
[43]
43 He J X, Gendron J M, Sun Y, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005, 307: 1634-1638
[44]
44 Chung H Y, Fujioka S, Choe S, et al. Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents, and led to a dwarf phenotype in Arabidopsis thaliana. Plant Cell Rep, 2010, 29: 397-402
[45]
45 Nole-Wilson S, Rueschhoff E E, Bhatti H, et al. Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol, 2010, 10: 198