1 Fradin E F, Thomma B P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol, 2006, 7: 71-86
[2]
3 Bhat R G, Subbarao K V. Host range specificity in Verticillium dahliae. Phytopathology, 1999, 89: 1218-1225
8 Aguado A, Santos B, Blanco C, et al. Study of gene effects for cotton yield and Verticillium wilt tolerance in cotton plant (Gossypium hirsutum L.). Field Crop Res, 2008, 107: 78-86
[8]
9 Zhang J, Sanogo S, Flynn R, et al. Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to upland cotton (G. hirsutum). Euphytica, 2012, 187: 147-160
[9]
10 Wang H M, Lin Z X, Zhang X L, et al. Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol, 2008, 50: 174-182
12 Diwan N, Fluhr R, Eshed Y, et al. Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet, 1999, 98: 315-319
[12]
13 Kawchuk L M, Hachey J, Lynch D R, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA, 2001, 98: 6511-6515
[13]
14 Fradin E F, Zhang Z, Juarez Ayala J C, et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol, 2009, 150: 320-332
[14]
15 Fradin E F, Abd-El-Haliem A, Masini L, et al. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol, 2011, 156: 2255-2265
[15]
16 Liebrand T W, van den Berg G C, Zhang Z, et al. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci USA, 2013, 110: 10010-10015
[16]
17 Liebrand T W, Kombrink A, Zhang Z, et al. Chaperones of the endoplasmic reticulum are required for Ve1-mediated resistance to Verticillium. Mol Plant Pathol, 2014, 15: 109-117
[17]
18 Gayoso C, Pomar F, Novo-Uzal E, et al. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol, 2010, 10: 232
[18]
19 Xu L, Zhu L, Tu L, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62: 5607-5621
[19]
20 Gao W, Long L, Zhu L F, et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690-3703
[20]
21 Xu F, Yang L, Zhang J, et al. Prevalence of the defoliating pathotype of Verticillium dahliae on cotton in central China and virulence on selected cotton cultivars. J Phytopathol, 2012, 160: 369-376
[21]
22 Goodin M M, Zaitlin D, Naidu R A, et al. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact, 2008, 21: 1015-1026
[22]
23 Horsch R, Fry J, Hoffmann N, et al. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231
[23]
24 Jin S, Zhang X, Nie Y, et al. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plantarum, 2006, 50: 519-524
[24]
25 Liu D, Tu L, Wang L, et al. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep, 2008, 8: 1385-1394
[25]
26 Zhu L, Tu L, Zeng F, et al. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agronomic Sin, 2005, 31: 1657-1659
[26]
27 Mercado-Blanco J, Rodríguez-Jurado D, Pérez-Artés E, et al. Detection of the defoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Eur J Plant Pathol, 2002, 108: 1-13
[27]
28 Mercado-Blanco J, Rodríguez-Jurado D, Pérez-Artés E, et al. Detection of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Plant Pathol, 2001, 50: 609-619
[28]
29 de Jonge R, Peter van Esse H, Maruthachalam K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci USA, 2012, 109: 5110-5115
31 Zhang B, Yang Y, Chen T, et al. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One, 2012, 7: e51091
[31]
32 Zhang Y, Wang X, Yang S, et al. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep, 2011, 30: 2085-2096
[32]
33 Gao X, Li F, Li M, et al. Cotton GhBAK1 mediates Verticillium wilt resistance and cell death. J Integr Plant Biol, 2013, 55: 586-596
[33]
34 Gao X, Wheeler T, Li Z, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. The Plant J, 2011, 66: 293-305
[34]
35 Zhang Z, Fradin E, de Jonge R, et al. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol Plant Microbe Interact, 2013, 26: 182-190
[35]
36 Hu G, deHart A K, Li Y, et al. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J, 2005, 42: 376-391
[36]
37 Aarts N, Metz M, Holub E, et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 10306-10311
[37]
38 Peart J R, Cook G, Feys B J, et al. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J, 2002, 29: 569-579
[38]
39 Chaparro-Garcia A, Wilkinson R C, Gimenez-Ibanez S, et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana. PLoS One, 2011, 27: e16608
[39]
40 Schnathorst W, Mathre D. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology, 1966, 56: 1155-1161
[40]
41 Daayf F, Nicole M, Geiger J P. Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol, 1995, 101: 69-79
[41]
42 Klosterman S J, Atallah Z K, Vallad G E, et al. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol, 2009, 47: 39-62
[42]
43 Pérez-Artés E, García-Pedrajas M, Bejarano-Alcázar J, et al. Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. Eur J Plant Pathol, 2000, 106: 507-517
[43]
44 Korolev N. Virulence and VCG diversity in Verticillium spp. from plant tissue and soil. Phytoparasitica, 1998, 81: 266-267
[44]
45 Hazanovsky M, Mordechi-Lebiush S, Sivan S. Aggressiveness of Verticillium dahliae isolates from different vegetative compatibility groups to potato and tomato. Plant Pathol, 2001, 50: 477-482
[45]
46 Korolev N, Pérez-Artés E, Mercado-Blanco J, et al. Vegetative compatibility of cotton-defoliating Verticillium dahliae in Israel and its pathogenicity to various crop plants. Eur J Plant Pathol, 2008, 122: 603-617
[46]
47 Xia Z, Achar P, Benkang G. Vegetative compatibility groupings of Verticillium dahliae from cotton in mainland China. Eur J Plant Pathol, 1998, 104: 871-876