全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

棉花与番茄抗棉花黄萎病不依赖于Ve1

DOI: 10.1360/052014-90, PP. 803-814

Keywords: 棉花,番茄,黄萎病,Ve1,信号路径

Full-Text   Cite this paper   Add to My Lib

Abstract:

黄萎病是我国棉花的主要病害之一,发掘抗病基因和阐明抗病机制是开展棉花抗病分子育种的基础.本研究将目前唯一的植物抗黄萎病主效基因Ve1分别在本氏烟和陆地棉中超量表达,以探讨其在防控棉花黄萎病中的价值.研究发现,Ve1基因在本氏烟中超量表达后并未对番茄大丽轮枝菌2个生理小种和棉花黄萎病菌产生明显抗性.RT-PCR分析表明,Ve1并不能激活烟草抗病相关基因的表达,推测本氏烟中可能不存在完整的Ve1介导的抗黄萎病信号路径.Ve1超量表达的转基因棉花接种棉花黄萎病菌“V991”后表现出与本氏烟类似的结果,同时发现,陆地棉对番茄大丽轮枝菌1号生理小种表现出高抗性.利用番茄抗/感黄萎病近等基因系“CraigellaGCR218”/“CraigellaGCR26”进一步研究发现,2个番茄材料均对棉花落叶型强致病力黄萎病菌“V991”免疫,这暗示番茄对棉花黄萎病菌的抗性不依赖于Ve1.分子鉴定表明,棉花黄萎病菌与番茄大丽轮枝菌1号和2号生理小种存在明显区别,番茄大丽轮枝菌1号和2号生理小种均属于非落叶型黄萎病菌.本研究中鉴定的棉花黄萎病菌均不含有ave1基因,这可能是在棉花中超量表达Ve1并不能增强其棉花黄萎病菌抗性的直接原因.通过病毒介导的基因沉默,在抑制GbSERK1的表达后能显著削弱海岛棉对黄萎病菌的抗性,证实“海7124”中存在类似于Ve1的下游抗病信号路径.本研究还对棉花类受体蛋白的进化以及Ve1抗病信号路径在棉花抗黄萎病机制研究中的价值进行了探讨.

References

[1]  1 Fradin E F, Thomma B P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol, 2006, 7: 71-86
[2]  3 Bhat R G, Subbarao K V. Host range specificity in Verticillium dahliae. Phytopathology, 1999, 89: 1218-1225
[3]  4 姚耀文, 傅翠真, 王文录, 等. 棉花黄萎病菌生理型鉴定的初步研究. 植物保护学报, 1982, 9: 145-148
[4]  5 马峙英, 王省芬, 张桂寅, 等. 不同来源海岛棉品种黄萎病抗性遗传研究. 作物学报, 2000, 26: 315-321
[5]  6 高玉千, 聂以春, 张献龙. 棉花抗黄萎病基因的QTL定位. 棉花学报, 2003, 15: 73-78
[6]  7 房卫平, 祝水金, 季道藩. 陆地棉和海岛棉的黄萎病抗性遗传研究. 棉花学报, 2003, 15: 3-7
[7]  8 Aguado A, Santos B, Blanco C, et al. Study of gene effects for cotton yield and Verticillium wilt tolerance in cotton plant (Gossypium hirsutum L.). Field Crop Res, 2008, 107: 78-86
[8]  9 Zhang J, Sanogo S, Flynn R, et al. Germplasm evaluation and transfer of Verticillium wilt resistance from Pima (Gossypium barbadense) to upland cotton (G. hirsutum). Euphytica, 2012, 187: 147-160
[9]  10 Wang H M, Lin Z X, Zhang X L, et al. Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integr Plant Biol, 2008, 50: 174-182
[10]  11 蒋锋, 赵君, 周雷, 等. 陆地棉抗黄萎病基因的分子标记定位. 中国科学C辑: 生命科学, 2009, 39: 849-861
[11]  12 Diwan N, Fluhr R, Eshed Y, et al. Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet, 1999, 98: 315-319
[12]  13 Kawchuk L M, Hachey J, Lynch D R, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA, 2001, 98: 6511-6515
[13]  14 Fradin E F, Zhang Z, Juarez Ayala J C, et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol, 2009, 150: 320-332
[14]  15 Fradin E F, Abd-El-Haliem A, Masini L, et al. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol, 2011, 156: 2255-2265
[15]  16 Liebrand T W, van den Berg G C, Zhang Z, et al. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc Natl Acad Sci USA, 2013, 110: 10010-10015
[16]  17 Liebrand T W, Kombrink A, Zhang Z, et al. Chaperones of the endoplasmic reticulum are required for Ve1-mediated resistance to Verticillium. Mol Plant Pathol, 2014, 15: 109-117
[17]  18 Gayoso C, Pomar F, Novo-Uzal E, et al. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol, 2010, 10: 232
[18]  19 Xu L, Zhu L, Tu L, et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62: 5607-5621
[19]  20 Gao W, Long L, Zhu L F, et al. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics, 2013, 12: 3690-3703
[20]  21 Xu F, Yang L, Zhang J, et al. Prevalence of the defoliating pathotype of Verticillium dahliae on cotton in central China and virulence on selected cotton cultivars. J Phytopathol, 2012, 160: 369-376
[21]  22 Goodin M M, Zaitlin D, Naidu R A, et al. Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact, 2008, 21: 1015-1026
[22]  23 Horsch R, Fry J, Hoffmann N, et al. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231
[23]  24 Jin S, Zhang X, Nie Y, et al. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plantarum, 2006, 50: 519-524
[24]  25 Liu D, Tu L, Wang L, et al. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep, 2008, 8: 1385-1394
[25]  26 Zhu L, Tu L, Zeng F, et al. An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agronomic Sin, 2005, 31: 1657-1659
[26]  27 Mercado-Blanco J, Rodríguez-Jurado D, Pérez-Artés E, et al. Detection of the defoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Eur J Plant Pathol, 2002, 108: 1-13
[27]  28 Mercado-Blanco J, Rodríguez-Jurado D, Pérez-Artés E, et al. Detection of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Plant Pathol, 2001, 50: 609-619
[28]  29 de Jonge R, Peter van Esse H, Maruthachalam K, et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci USA, 2012, 109: 5110-5115
[29]  30 陈捷胤. 海岛棉LRR-TM类抗病基因GbaVd1和GbaVd2的克隆与功能研究. 博士学位论文. 北京: 中国农业科学院, 2010
[30]  31 Zhang B, Yang Y, Chen T, et al. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One, 2012, 7: e51091
[31]  32 Zhang Y, Wang X, Yang S, et al. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep, 2011, 30: 2085-2096
[32]  33 Gao X, Li F, Li M, et al. Cotton GhBAK1 mediates Verticillium wilt resistance and cell death. J Integr Plant Biol, 2013, 55: 586-596
[33]  34 Gao X, Wheeler T, Li Z, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. The Plant J, 2011, 66: 293-305
[34]  35 Zhang Z, Fradin E, de Jonge R, et al. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol Plant Microbe Interact, 2013, 26: 182-190
[35]  36 Hu G, deHart A K, Li Y, et al. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J, 2005, 42: 376-391
[36]  37 Aarts N, Metz M, Holub E, et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 10306-10311
[37]  38 Peart J R, Cook G, Feys B J, et al. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J, 2002, 29: 569-579
[38]  39 Chaparro-Garcia A, Wilkinson R C, Gimenez-Ibanez S, et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana. PLoS One, 2011, 27: e16608
[39]  40 Schnathorst W, Mathre D. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology, 1966, 56: 1155-1161
[40]  41 Daayf F, Nicole M, Geiger J P. Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility and pathogenicity on cotton. Eur J Plant Pathol, 1995, 101: 69-79
[41]  42 Klosterman S J, Atallah Z K, Vallad G E, et al. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol, 2009, 47: 39-62
[42]  43 Pérez-Artés E, García-Pedrajas M, Bejarano-Alcázar J, et al. Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. Eur J Plant Pathol, 2000, 106: 507-517
[43]  44 Korolev N. Virulence and VCG diversity in Verticillium spp. from plant tissue and soil. Phytoparasitica, 1998, 81: 266-267
[44]  45 Hazanovsky M, Mordechi-Lebiush S, Sivan S. Aggressiveness of Verticillium dahliae isolates from different vegetative compatibility groups to potato and tomato. Plant Pathol, 2001, 50: 477-482
[45]  46 Korolev N, Pérez-Artés E, Mercado-Blanco J, et al. Vegetative compatibility of cotton-defoliating Verticillium dahliae in Israel and its pathogenicity to various crop plants. Eur J Plant Pathol, 2008, 122: 603-617
[46]  47 Xia Z, Achar P, Benkang G. Vegetative compatibility groupings of Verticillium dahliae from cotton in mainland China. Eur J Plant Pathol, 1998, 104: 871-876
[47]  48 郭小平, 潘家驹. 棉花黄萎病抗性的遗传方式. 棉花学报, 1990, 2: 1-7
[48]  49 潘家驹, 张天真, 蒯本科, 等. 棉花黄萎病抗性遗传研究. 南京农业大学学报, 1994, 17: 8-18
[49]  2 Barbara D J, Clewes E. Plant pathogenic Verticillium species: how many of them are there? Mol Plant Pathol, 2003, 4: 297-305

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133