3 Stoddart D, Heron A J, Klingelhoefer J, et al. Nucleobase recognition in ssDNA at the central constriction of the alpha-hemolysin pore. Nano Lett, 2010, 10: 3633-3637
[2]
4 Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA, 1996, 93: 13770-13773
[3]
5 Akeson M, Branton D, Kasianowicz J J, et al. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J, 1999, 77: 3227-3233
[4]
6 Vodyanoy I, Bezrukov S M. Sizing of an ion pore by access resistance measurements. Biophys J, 1992, 62: 10-11
[5]
7 Wanunu M, Dadosh T, Ray V, et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol, 2010, 5: 807-814
[6]
8 Harrell C C, Choi Y, Horne L P, et al. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir, 2006, 22: 10837-10843
[7]
9 Fologea D, Gershow M, Ledden B, et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett, 2005, 5: 1905-1909
[8]
10 Heng J B, Aksimentiev A, Ho C, et al. Stretching DNA using the electric field in a synthetic nanopore. Nano Lett, 2005, 5: 1883-1888
[9]
11 Chen P, Gu J J, Brandin E, et al. Probing single DNA molecule transport using fabricated nanopores. Nano Lett, 2004, 4: 2293-2298
[10]
12 Li J L, Gershow M, Stein D, et al. DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater, 2003, 2: 611-615
[11]
13 Storm A J, Chen J H, Zandbergen H W, et al. Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E, 2005, 71: 051903
[12]
14 Fologea D, Brandin E, Uplinger J, et al. DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis, 2007, 28: 3186-3192
[13]
15 Zwolak M, Di Ventra M. Electronic signature of DNA nucleotides via transverse transport. Nano Lett, 2005, 5: 421-424
[14]
16 Lagerqvist J, Zwolak M, Di Ventra M. Fast DNA sequencing via transverse electronic transport. Nano Lett, 2006, 6: 779-782
[15]
17 Lagerqvist J, Zwolak M, Di Ventra M. Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. Biophys J, 2007, 93: 2384-2390
[16]
18 Ohshiro T, Umezawa Y. Complementary base-pair-facilitated electron tunneling for electrically pinpointing complementary nucleobases. Proc Natl Acad Sci USA, 2006, 103: 10-14
[17]
19 Lindsay S, He J, Sankey O, et al. Recognition tunneling. Nanotechnology, 2010, 21: 262001
[18]
20 Heng J B, Aksimentiev A, Ho C, et al. Beyond the gene chip. Bell Labs Tech J, 2005, 10: 5-22
[19]
21 Gracheva M E, Aksimentiev A, Leburton J P. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology, 2006, 17: 3160-3165
[20]
22 Gracheva M E, Xiong A L, Aksimentiev A, et al. Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology, 2006, 17: 622-633
[21]
23 Sigalov G, Comer J, Timp G, et al. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano Lett, 2008, 8: 56-63
[22]
24 Tsutsui M, Rahong S, Iizumi Y, et al. Single-molecule sensing electrode embedded in-plane nanopore. Sci Rep, 2011, 1: 46
[23]
25 Li J, Stein D, McMullan C, et al. Ion-beam sculpting at nanometre length scales. Nature, 2001, 412: 166-169
[24]
26 Storm A J, Chen J H, Ling X S, et al. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater, 2003, 2: 537-540
[25]
27 Wu M Y, Krapf D, Zandbergen M, et al. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl Phys Lett, 2005, 87: 113106
[26]
28 Chang H, Kosari F, Andreadakis G, et al. DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett, 2004, 4: 1551-1556
[27]
29 Gierak J, Madouri A, Biance A L, et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron Eng, 2007, 84: 779-783
[28]
30 Venkatesan B M, Shah A B, Zuo J M, et al. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv Funct Mater, 2010, 20: 1266-1275
[29]
31 Fischbein M D, Drndic M. Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett, 2008, 93: 113107
[30]
32 Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467: 190-193
[31]
33 Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 2915-2921
[32]
34 Schneider G F, Kowalczyk S W, Calado V E, et al. DNA translocation through graphene nanopores. Nano Lett, 2010, 10: 3163-3167
[33]
38 Cai Q, Ledden B, Krueger E, et al. Nanopore sculpting with noble gas ions. J Appl Phys, 2006, 100
[34]
41 Danelon C, Santschi C, Brugger J, et al. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir, 2006, 22: 10711-10715
[35]
42 Nilsson J, Lee J R I, Ratto T V, et al. Localized functionalization of single nanopores. Adv Mater, 2006, 18: 427-431
[36]
43 Wei R S, Pedone D, Zurner A, et al. Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. Small, 2010, 6: 1406-1414
[37]
44 Ayub M, Ivanov A, Hong J, et al. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. J Phys Condens Matter, 2010, 22: 454128
[38]
45 Stein D, Li J L, Golovchenko J A. Ion-beam sculpting time scales. Phys Rev Lett, 2002, 89: 276106
[39]
46 Stein D M, McMullan C J, Li J L, et al. Feedback-controlled ion beam sculpting apparatus. Rev Sci Instrum, 2004, 75: 900-905
[40]
47 Mitsui T, Stein D, Kim Y R, et al. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores. Phys Rev Lett, 2006, 96: 036102
[41]
48 Biance A L, Gierak J, Bourhis E, et al. Focused ion beam sculpted membranes for nanoscience tooling. Microelectron Eng, 2006, 83: 1474-1477
[42]
49 Yang J J, Ferranti D C, Stern L A, et al. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology, 2011, 22: 285310
[43]
50 Marshall M M, Yang J J, Hall A R. Direct and transmission milling of suspended silicon nitride membranes with a focused helium ion beam. Scanning, 2012, 34: 101-106
[44]
51 Chang H, Iqbal S M, Stach E A, et al. Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Appl Phys Lett, 2006, 88: 103109
[45]
52 Zhang W M, Wang Y G, Li J, et al. Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation. Appl Phys Lett, 2007, 90: 163102
[46]
53 Zandbergen H W, van Duuren R J H A, Alkemade P F A, et al. Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles. Nano Lett, 2005, 5: 549-553
[47]
54 Fischbein M D, Drndic M. Sub-10 nm device fabrication in a transmission electron microscope. Nano Lett, 2007, 7: 1329-1337
[48]
55 Gierhart B C, Flowitt D G, Chen S J, et al. Nanopore with transverse nanoelectrodes for electrical characterization and sequencing of DNA. Sensor Actuat B-Chem, 2008, 132: 593-600
[49]
56 Ivanov A P, Instuli E, McGilvery C M, et al. DNA tunneling detector embedded in a nanopore. Nano Lett, 2011, 11: 279-285
[50]
61 Luan B, Peng H, Polonsky S, et al. Base-by-base ratcheting of single stranded dna through a solid-state nanopore. Phys Rev Lett, 2010, 104: 238103
[51]
63 Peng H B, Ling X S S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology, 2009, 20: 185101
[52]
64 Keyser U F. Controlling molecular transport through nanopores. J R Soc Interface, 2011, 8: 1369-1378
[53]
65 Kim Y R, Min J, Lee I H, et al. Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosens Bioelectron, 2007, 22: 2926-2931
[54]
66 Wanunu M, Meller A. Chemically modified solid-state nanopores. Nano Lett, 2007, 7: 1580-1585
[55]
67 Mussi V, Fanzio P, Repetto L, et al. “DNA-Dressed NAnopore” for complementary sequence detection. Biosens Bioelectron, 2011, 29: 125-131
[56]
68 Siwy Z, Heins E, Harrell C C, et al. Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc, 2004, 126: 10850-10851
[57]
69 Siwy Z, Trofin L, Kohli P, et al. Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc, 2005, 127: 5000-5001
[58]
70 Bell N A W, Engst C R, Ablay M, et al. DNA origami nanopores. Nano Lett, 2012, 12: 512-517
[59]
71 Wei R S, Martin T G, Rant U, et al. DNA origami gatekeepers for solid-state nanopores. Angew Chem Int Ed, 2012, 51: 4864-4867
[60]
72 Wei R S, Gatterdam V, Wieneke R, et al. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat Nanotechnol, 2012, 7: 257-263
[61]
73 Bready B, Ling X S, Pertsinidis A. Hybridization assisted nanopore sequencing. U.S. Patent, WO2007041621-A2, 2007-4-12
[62]
74 Singer A, Wanunu M, Morrison W, et al. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett, 2010, 10: 738-742
[63]
1 Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 1977, 74: 5463-5467
[64]
2 Maxam A M, Gilbert W. New method for sequencing DNA. Proc Natl Acad Sci USA, 1977, 74: 560-564
[65]
35 Song B, Schneider G F, Xu Q, et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett, 2011, 11: 2247-2250
[66]
36 Venkatesan B M, Estrada D, Banerjee S, et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. ACS Nano, 2012, 6: 441-450
[67]
37 Kim M J, Wanunu M, Bell D C, et al. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater, 2006, 18: 3149-3153
[68]
39 Park S R, Peng H, Ling X S. Fabrication of nanopores in silicon chips using feedback chemical etching. Small, 2007, 3: 116-119
[69]
40 Chen P, Mitsui T, Farmer D B, et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett, 2004, 4: 1333-1337
[70]
57 Jiang Z, Mihovilovic M, Chan J, et al. Fabrication of nanopores with embedded annular electrodes and transverse carbon nanotube electrodes. J Phys Condens Matter, 2010, 22: 454114
[71]
58 Spinney P S, Collins S D, Howitt D G, et al. Fabrication and characterization of a solid-state nanopore with self-aligned carbon nanoelectrodes for molecular detection. Nanotechnology, 2012, 23: 135501
[72]
59 Healy K, Ray V, Willis L J, et al. Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution. Electrophoresis, 2012, 33: 3488-3496
[73]
60 Polonsky S, Rossnagel S, Stolovitzky G. Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett, 2007, 91: 153103
[74]
62 Keyser U F, Koeleman B N, Van Dorp S, et al. Direct force measurements on DNA in a solid-state nanopore. Nat Phys, 2006, 2: 473-477
[75]
75 McNally B, Singer A, Yu Z, et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett, 2010, 10: 2237-2244
[76]
76 Soni G V, Singer A, Yu Z, et al. Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev Sci Instrum, 2010, 81: 014301