全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机械力及力学信号转导影响干细胞命运的研究进展

DOI: 10.1360/N052013-0080, PP. 639-648

Keywords: 机械力,力学信号转导,干细胞,自我更新,分化

Full-Text   Cite this paper   Add to My Lib

Abstract:

干细胞作为一种未分化的祖细胞,目前已被广泛应用于开展组织损伤修复、再生以及干细胞特异谱系分化的研究.大量研究表明,干细胞所处的微环境对调控干细胞的生长和分化具有重要作用,多种溶液介质、细胞外基质和信号通路等参与了干细胞命运的调控.尽管已有大量研究证明,溶液介质(如激素和生长因子)在干细胞的生长和分化中发挥重要作用,但近年来越来越多的研究表明,机械力及力学信号转导同样在干细胞自我更新、分化、衰老和凋亡等细胞生理过程中起到重要的作用.本文将对机械应力响应的细胞基础、生物力学及力学信号调控干细胞自我更新和分化,以及生物力学调控干细胞命运可能的作用机制几个方面加以综述.

References

[1]  4 Discher D E, Mooney D J, Zandstra P W. Growth factors, matrices, and forces combine and control stem cells. Science, 2009, 324: 1673-1677
[2]  5 Chowdhury F, Li Y, Poh Y C, et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One, 2010, 5: e15655
[3]  6 Estes B T, Gimble J M, Guilak F. Mechanical signals as regulators of stem cell fate. Curr Top Dev Biol, 2004, 60: 91-126
[4]  7 Levenstein M E, Ludwig T E, Xu R H, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells, 2006, 24: 568-574
[5]  46 Lü D Y, Liu X F, Gao Y X, et al. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model. PLoS One, 2013, 8: e74563
[6]  47 雷晓华, 宁立娜, 曹宇静, 等. 微重力条件下细胞培养和组织工程研究进展. 生命科学, 2010, 22: 1047-1052
[7]  48 Yuge L, Kajiume T, Tahara H, et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev, 2006, 15: 921-929
[8]  49 Kawahara Y, Manabe T, Matsumoto M, et al. LIF-free embryonic stem cell culture in simulated microgravity. PLoS One, 2009, 4: e6343
[9]  50 Lei X H, Ning L N, Cao Y J, et al. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One, 2011, 6: e26603
[10]  51 Lei X H, Deng Z L, Zhang H S, et al. Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/b-catenin pathway. Stem Cell Rev Rep, 2014, doi: 10.1007/s12015-014-9511-6
[11]  52 Friedland J C, Lee M H, Boettiger D. Mechanically activated integrin switch controls a5b1 function. Science, 2009, 323: 642-644
[12]  53 Somlyo A P, Somlyo A V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol, 2000, 522: 177-185
[13]  54 Grashoff C, Hoffman B D, Brenner M D, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 2010, 466: 263-266
[14]  55 Guilluy C, Swaminathan V, Garcia-Mata R, et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol, 2011, 13: 722-727
[15]  56 Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474: 179-183
[16]  57 Hahn C, Schwartz M A. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol, 2009, 10: 53-62
[17]  58 Wang N, Tytell J D, Ingber D E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol, 2009, 10: 75-82
[18]  59 Tullio A N, Accili D, Ferrans V J, et al. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci USA, 1997, 94: 12407-12412
[19]  60 Conti M A, Even-Ram S, Liu C, et al. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem, 2004, 279: 41263-41266
[20]  61 Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol, 2007, 25: 681-686
[21]  62 Li D, Zhou J, Wang L, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol, 2010, 191: 631-644
[22]  19 Paszek M J, Zahir N, Johnson K R, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005, 8: 241-254
[23]  20 Connelly J T, Gautrot J E, Trappmann B, et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol, 2010, 12: 711-718
[24]  21 Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126: 677-689
[25]  22 Fu J, Wang Y K, Yang M T, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods, 2010, 7: 733-736
[26]  23 Chowdhury F, Na S, Li D, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater, 2010, 9: 82-88
[27]  24 Liu J, Tan Y, Zhang H, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater, 2012, 11: 734-741
[28]  25 Du J, Chen X, Liang X, et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci USA, 2011, 108: 9466-9471
[29]  26 Nelson C M, Bissell M J. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol, 2005, 15: 342-352
[30]  27 McBeath R, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004, 6: 483-495
[31]  28 李振涵, 孙树津, 龙勉. 微模式化基底上大鼠骨髓间充质干细胞的增殖、分化和迁移. 医用生物力学, 2009, 24: 256-262
[32]  29 Li Z, Gong Y, Sun S, et al. Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials, 2013, 34: 7616-7625
[33]  30 Lü D Y, Luo C H, Zhang C, et al. Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials, 2014, 35: 3945-3955
[34]  31 Watt F M, Jordan P W, O''Neill C H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci USA, 1988, 85: 5576-5580
[35]  32 Ben-Ze''ev A. The role of changes in cell shape and contacts in the regulation of cytoskeleton expression during differentiation. J Cell Sci Suppl, 1987, 8: 293-312
[36]  33 Ren X D, Kiosses W B, Schwartz M A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J, 1999, 18: 578-585
[37]  34 Hancock J F. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol, 2003, 4: 373-384
[38]  35 Riveline J P, Capeau J, Robert J J, et al. Extreme subcutaneous insulin resistance successfully treated by an implantable pump. Diabetes Care, 2001, 24: 2155-2156
[39]  36 Chen C S, Alonso J L, Ostuni E, et al. Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun, 2003, 307: 355-361
[40]  37 Adamo L, Garcia-Cardena G. Directed stem cell differentiation by fluid mechanical forces. Antioxid Redox Signal, 2011, 15: 1463-1473
[41]  38 Yamamoto K, Sokabe T, Watabe T, et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol, 2005, 288: H1915-H1924
[42]  39 Adamo L, Naveiras O, Wenzel P L, et al. Biomechanical forces promote embryonic haematopoiesis. Nature, 2009, 459: 1131-1135
[43]  40 Toh Y C, Voldman J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J, 2011, 25: 1208-1217
[44]  41 Glossop J R, Cartmell S H. Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling. Gene Expr Patterns, 2009, 9: 381-388
[45]  42 Yourek G, Mccormick S M, Mao J J, et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med, 2010, 5: 713-724
[46]  43 Kurpinski K, Chu J, Hashi C, et al. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA, 2006, 103: 16095-16100
[47]  44 Kurpinski K, Chu J, Wang D, et al. Proteomic profiling of mesenchymal stem cell responses to mechanical strain and TGF-beta1. Cell Mol Bioeng, 2009, 2: 606-614
[48]  45 何学令, 姚晓玲, 冯贤, 等. 力学刺激和成骨化学诱导剂对大鼠骨髓间充质干细胞成骨分化能力的影响. 医用生物力学, 2011, 26: 116-120
[49]  17 Long M, Sato M, Lim C T, et al. Advances in experiments and modeling in micro- and nano-biomechanics: a mini review. Cell Mole Bioeng, 2011, 4: 327-339
[50]  18 Discher D E, Janmey P, Wang Y L. Tissue cells feel and respond to the stiffness of their substrate. Science, 2005, 310: 1139-1143
[51]  1 Griffith L G, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science, 2002, 295: 1009-1014
[52]  2 Demehri S, Kopan R. Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development, 2009, 136: 891-896
[53]  3 Janmey P A, Mcculloch C A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng, 2007, 9: 1-34
[54]  8 Woll P S, Morris J K, Painschab M S, et al. Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood, 2008, 111: 122-131
[55]  9 Xu R H, Sampsell-Barron T L, Gu F, et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 2008, 3: 196-206
[56]  10 Smith J R, Vallier L, Lupo G, et al. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol, 2008, 313: 107-117
[57]  11 Ying Q L, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 2003, 115: 281-292
[58]  12 Ingber D E, Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci, 2003, 116: 1157-1173
[59]  13 Parker K K, Brock A L, Brangwynne C, et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J, 2002, 16: 1195-1204
[60]  14 Carter D R, Wong M. Modelling cartilage mechanobiology. Philos Trans R Soc B-Biol Sci, 2003, 358: 1461-1471
[61]  15 Holmvall K, Camper L, Johansson S, et al. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res, 1995, 221: 496-503
[62]  16 Stewart M P, Helenius J, Toyoda Y, et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature, 2011, 469: 226-230

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133