1 Rosenberg B, Vancamp L. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222: 385-386
[2]
2 Ott I, Gust R. Non platinum metal complexes as anti-cancer drugs. Arch Pharm, 2007, 340: 117-126
[3]
3 K?pf-Maier P. Antitumor activity of titanocene dichloride in xenografted human renal-cell carcinoma. Anticancer Res, 1999, 19: 493-504
[4]
4 Hartinger C G, Jakupec M A, Zorbas-Seifried S, et al. KP1019, a new redox-active anticancer agent-preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers, 2008, 5: 2140-2155
[5]
6 Rafique S, Idrees M, Nasim A, et al. Transition metal complexes as potential therapeutic agents. Biotech Mol Biol Rev, 2010, 5: 38-45
[6]
7 Wedler F C. Biological significance of manganese in mammalian systems. Prog Med Chem, 1993, 30: 89-133
[7]
8 El Mchichi B, Hadji A, Vazquez A, et al. p38 MAPK and MSK1 mediate caspase-8 activation in manganese-induced mitochondria- dependent cell death. Cell Death Differ, 2007, 14: 1826-1836
[8]
9 Aschner M, Guilarte T R, Schneider J S, et al. Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol, 2007, 221: 131-147
[9]
10 Zhou C Y, Zhao J, Wu Y B, et al. Synthesis, characterization and studies on DNA-binding of a new Cu (II) complex with N1, N8-bis (l-methyl-4-nitropyrrole-2-carbonyl) triethylenetetramine. J Inorg Biochem, 2007, 101: 10-18
[10]
11 Hille A, Ott I, Kitanovic A, et al. [N,N′-bis(salicylidene)-1,2-phenylenediamine] metal complexes with cell death promoting properties. J Biol Inorg Chem, 2009, 14: 711-725
[11]
12 Kovala-Demertzi D, Hadjipavlou-Litina D, Staninska M, et al. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese (II), cobalt (II), nickel (II), copper (II) and zinc (II). J Enzyme Inhib Med Chem, 2009, 24: 742-752
[12]
13 Chen Q Y, Zhou D F, Huang J, et al. Synthesis, anticancer activities, interaction with DNA and mitochondria of manganese complexes. J Inorg Biochem, 2010, 104: 1141-1147
[13]
14 Kondo Y, Kanzawa T, Sawaya R, et al. Role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005, 5: 726
[14]
15 Reed J C. Apoptosis-targeted therapies for cancer. Cancer Cell, 2003, 3: 17
[15]
16 Srdic-Rajic T, Zec M, Todorovic T, et al. Non-substituted N-heteroaromatic selenosemicarbazone metal complexes induce apoptosis in cancer cells via activation of mitochondrial pathway. Eur J Med Chem, 2011, 46: 3734-3747
[16]
17 Herr I, Debatin K M. Cellular stress response and apoptosis in cancer therapy. Blood, 2001, 98: 2603
[17]
18 Johnstone R W, Ruefli A A, Lowe S W. Apoptosis: a link between cancer genetics and chemotherapy. Cell, 2002, 108: 153-164
[18]
19 Galluzzi L, Maiuri M C, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ, 2007, 14: 1237-1243
[19]
20 Rami A. Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol, 2009, 35: 449-461
[20]
21 Chen S, Rehman S K, Zhang W, et al. Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta-Rev Cancer, 2010, 1806: 220-229
[21]
22 Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23: 2891-2906
[22]
23 Cheng Y, Qiu F, Tashiro S, et al. ERK and JNK mediate TNF [alpha]-induced p53 activation in apoptotic and autophagic L929 cell death. Biochem Biophys Res Commun, 2008, 376: 483-488
[23]
24 Moretti L, Yang E S, Kim K W, et al. Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Update, 2007, 10: 135-143
[24]
25 Rubinsztein D C, Gestwicki J E, Murphy L O, et al. Potential therapeutic applications of autophagy. Nat Rev Drug Discov, 2007, 6: 304-312
[25]
26 Liu B, Cheng Y, Zhang B, et al. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett, 2009, 275: 54-60
[26]
27 Ghavami S, Eshragi M, Ande S R, et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res, 2009, 20: 314-331
[27]
28 Wei Y H, Lee H C. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med, 2002, 227: 671
[28]
29 Xu J, Dai X, Liu H, et al. A novel 7-azaisoindigo derivative-induced cancer cell apoptosis and mitochondrial dysfunction mediated by oxidative stress. J Appl Toxicol, 2011, 31: 164-172
[29]
30 Zamzami N, Susin S A, Marchetti P, et al. Mitochondrial control of nuclear apoptosis. J Exp Med, 1996, 183: 1533
[30]
31 Kuznetsov A V, Margreiter R, Amberger A, et al. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta-Mol Cell Res, 2011, 1813: 1144-1152
[31]
32 Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol, 2009, 19: 57-66
[32]
33 Zhou D F, Chen Q Y, Qi Y, et al. Anticancer activity, attenuation on the absorption of calcium in mitochondria, and catalase activity for manganese complexes of N-substituted di (picolyl) amine. Inorg Chem, 2011, 50: 6929-6937
[33]
34 Alley M C, Scudiero D A, Monks A, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res, 1988, 48: 589
[34]
35 Cohen G M, Sun X M, Snowden R T, et al. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J, 1992, 286: 331
[35]
36 Biederbick A, Kern H F, Els?sser H P. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol, 1995, 66: 3
[36]
37 Smiley S T, Reers M, Mottola-Hartshorn C, et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA, 1991, 88: 3671
[37]
38 Lemasters J J, Hackenbrock C R. Firefly luciferase assay for ATP production by mitochondria. Methods Enzymol, 1978, 57: 36-50
[38]
39 Takahashi A, Camacho P, Lechleiter J D, et al. Measurement of intracellular calcium. Physiol Rev, 1999, 79: 1089
[39]
5 Ansari K I, Grant J D, Kasiri S, et al. Manganese(III)-salens induce tumor selective apoptosis in human cells. J Inorg Biochem, 2009, 103: 818-826
[40]
41 Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000, 19: 5720-5728
[41]
42 Daniels T R, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol, 2006, 121: 159-176
[42]
43 Rajendiran V, Karthik R, Palaniandavar M, et al. Mixed-ligand copper (II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorg Chem, 2007, 46: 8208-8221
[43]
44 Shi Z Y, Li Y Q, Kang Y H, et al. Piperonal ciprofloxacin hydrazone induces growth arrest and apoptosis of human hepatocarcinoma SMMC-7721 cells. Acta Pharmacol Sin, 2012, 33: 271-278
[44]
45 Shibata S, Maeda M, Furuta K, et al. Neuroprotective effects of (arylthio)cyclopentenone derivatives on manganese-induced apoptosis in PC12 cells. Brain Res, 2009, 1294: 218-225
[45]
46 Afeseh Ngwa H, Kanthasamy A, Gu Y, et al. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol, 2011, 256: 227-240
[46]
47 Di X, Shiu R P, Newsham I F, et al. Apoptosis, autophagy, accelerated senescence and reactive oxygen in the response of human breast tumor cells to adriamycin. Biochem Pharmacol, 2009, 77: 1139-1150
[47]
48 Grandemange S, Herzig S, Martinou J C. Mitochondrial dynamics and cancer. Semin Cancer Biol, 2009, 19: 50-56
[48]
49 Goldman S J, Taylor R, Zhang Y, et al. Autophagy and the degradation of mitochondria. Mitochondrion, 2010, 10: 309-315
[49]
50 Guo W J, Ye S S, Cao N, et al. ROS-mediated autophagy was involved in cancer cell death induced by novel copper(II) complex. Exp Toxicol Pathol, 2010, 62: 577-582
[50]
51 Hausenloy D J, Ong S B, Yellon D M. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol, 2009, 104: 189-202
[51]
52 Franke J C, Pl?tz M, Prokop A, et al. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem Pharmacol, 2010, 79: 575-586
[52]
53 Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J, 2007, 26: 1749-1760
[53]
54 Li J, Xu Z, Tan M, et al. 3-(4-(benzo[d]thiazol-2-yl)-1-phenyl-1H-pyrazol-3-yl) phenyl acetate induced Hep G2 cell apoptosis through a ROS-mediated pathway. Chem Biol Interact, 2010, 183: 341-348
[54]
40 Carter W O, Narayanan P K, Robinson J P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol, 1994, 55: 253