全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蛋白质折叠、动力学以及蛋白质-配体结合的物理化学基础

, PP. 433-449

Keywords: 自由能图谱,熵-焓,非互补性,粗糙性,驱动力,热力学,能力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

蛋白质是生物体的重要组成部分并参与细胞内几乎所有的生物学过程.随着越来越多物种基因组序列的测定,准确理解基因产物的功能并探索蛋白质功能多样性的原因,已经成为当前的研究热点.为了研究蛋白质的功能,已有大量蛋白质的静态三维结构被测定.但是,蛋白功能最终受其动力学行为所控制,这包括折叠过程、构象波动、分子运动以及蛋白质-配体相互作用等.基于自由能图谱理论,本文深入讨论了蛋白质动力学的底层物理化学机制,并回答了以下问题:蛋白质为什么能够折叠、以及如何折叠成其天然三维结构?为什么蛋白质的动力学特征是固有的?其动力学行为如何控制蛋白质的功能?讨论结果将有助于后基因组时代生命科学研究中蛋白质结构-功能关系的理解.

References

[1]  1 Wright P E, Dyson H J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol, 1999, 293: 321-331
[2]  2 Anfinsen C B. The formation and stabilization of protein structure. Biochem J, 1972, 128: 737-749
[3]  3 Anfinsen C B. Principles that govern the folding of protein chains. Science, 1973, 181: 223-230
[4]  85 Koshland D E J. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA, 1958, 44: 98-104
[5]  86 Tobi D, Bahar I. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc Natl Acad Sci USA, 2005, 102: 18908-18913
[6]  87 Bosshard H R. Molecular recognition by induced fit: how fit is the concept? News Physiol Sci, 2001, 16: 171-173
[7]  88 Foote J, Milstein C. Conformational isomerism and the diversity of antibodies. Proc Natl Acad Sci USA, 1994, 91: 10370-10374
[8]  89 Changeux J P, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep, 2011, 3: 19
[9]  90 Serban D, Taraboulos A, DeArmond S J, et al. Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology, 1990, 40: 110-117
[10]  91 Kosik K S. Alzheimer’s disease: a cell biological perspective. Science, 1992, 256: 780-783
[11]  92 Pan K M, Baldwin M, Nguyen J, et al. Conversion of a-helices into b-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA, 1993, 90: 10926-10966
[12]  93 Weinreb P H, Zhen W, Poon A W, et al. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 1996, 35: 13709-13715
[13]  94 Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci, 2010, 35: 539-546
[14]  95 Ma B, Kumar S, Tsai C J, et al. Folding funnels and binding mechanisms. Protein Eng, 1999, 12: 713-720
[15]  96 Tsai C J, Xu D, Nussinov R. Protein folding via binding and vice versa. Fold Des, 1998, 3: R71-R80
[16]  97 Xie Y H, Sang P, Tao Y, et al. Protein folding and binding funnels: a common driving force and a common mechanism. J Biomol Struct Dyn, 2013, 31: 100-101
[17]  98 Tsai C J, Kumar S, Ma B, et al. Folding funnels, binding funnels, and protein function. Protein Sci, 1999, 8: 1181-1190
[18]  99 Xie Y H, Tao Y, Liu S Q. Wonderful roles of the entropy in protein dynamics, binding and folding. J Biomol Struc Dyn, 2013, 31: 98-100
[19]  100 Xu X, Su J, Chen W, et al. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation. J Biomol Struc Dyn, 2011, 28: 717-727
[20]  101 Liu S Q, Liu C Q, Fu Y X. Molecular motions in HIV-1 gp120 mutants reveal their preferences for different conformations. J Mol Graph Model, 2007, 26: 306-318
[21]  102 Liu S Q, Meng Z H, Fu Y X, et al. Insights derived from molecular dynamics simulation into the molecular motions of serine protease proteinase K. J Mol Model, 2010, 16: 17-28
[22]  103 Liu S Q, Meng Z H, Fu Y X, et al. The effect of calciums on the molecular motions of proteinase K. J Mol Model, 2011, 17: 289-300
[23]  104 刘赟, 王宝翰, 王存新, 等. 基于相对熵的蛋白质设计新方法. 中国科学G辑: 物理学 力学 天文学, 2003, 33: 348-356
[24]  4 Henzler-Wildman K A, Kern D. Dynamic personalities of proteins. Nature, 2007, 450: 964-972
[25]  5 Liu S Q, Xie Y H, Ji X L, et al. Protein folding, binding and energy landscape: a synthesis. In: Kaumaya P T P, ed. Protein Engineering. Rijeka: Intech, 2012. 207-252
[26]  6 Yang L Q, Sang P, Xie Y H, et al. Protein dynamics and motions in relation to their functions: several case studies and the underlying mechanisms. J Biomol Struct Dyn, 2014, 32: 372-393
[27]  7 Karplus M, McCammon J A. Molecular dynamics simulations of biomolecules. Nat Struct Biol, 2002, 9: 646-652
[28]  8 Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. Curr Opin Struct Biol, 2002, 12: 190-196
[29]  9 Kannan S, Zacharias M. Simulated annealing coupled replica exchange molecular dynamics—an efficient conformational sampling method. J Struct Biol, 2009, 166: 288-294
[30]  10 Haliloglu T, Bahar I, Erman B. Gaussian dynamics of folded proteins. Phys Rev Lett, 1997, 79: 3090-3093
[31]  11 Scheraga H A, Khalili M, Liwo A. Protein-folding dynamics: overview of molecular simulation techniques. Annu Rev Phys Chem, 2007, 58: 57-83
[32]  12 Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA, 2002, 99: 12562-12566
[33]  13 Granata D, Camilloni C, Vendruscolo M, et al. Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc Natl Acad Sci USA, 2013, 110: 6817-6822
[34]  14 Laio A, Gervasio F L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys, 2008, 71: 126601-126623
[35]  15 Kastner J. Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci, 2011, 1: 932-942
[36]  16 Torrie G M, Valleau J P. Non-physical sampling distributions in monte-carlo free-energy estimation: umbrella sampling. J Comput Phys, 1977, 23: 187-199
[37]  17 Kumar S, Rosenberg J M, Bouzida D, et al. Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem, 1995, 16: 1339-1350
[38]  18 Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Comm, 1995, 91: 275-282
[39]  19 Adcock S A, McCammon J A. Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev, 2006, 106: 1589-1615
[40]  20 Paci E, Karplus M. Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J Mol Biol, 1999, 288: 441-459
[41]  21 Schlitter J, Engels M, Kruger P, et al. Targeted molecular-dynamics simulation of conformational change—application to the T?R transition in insulin. Mol Simul, 1993, 10: 291-308
[42]  22 Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett, 1997, 78: 2690-2693
[43]  23 Stone J E, Phillips J C, Freddolino P L, et al. Accelerating molecular modeling applications with graphics processors. J Comput Chem, 2007, 28: 2618-2640
[44]  24 Brown W M, Kohlmeyer A, Plimpton S J, et al. Implementing molecular dynamics on hybrid high performance computers— particle-particle particle-mesh. Comput Phys Commun, 2012, 183: 449-459
[45]  25 Harvey M, Giupponi G, De Fabritiis G. Acemd: accelerated molecular dynamics simulations in the microseconds timescale. J Chem Theory Comput, 2009, 5: 1632-1639
[46]  26 Liu S Q, Liang L M, Tao Y, et al. Structural and dynamic basis of serine proteases from nematophagous fungi for cuticle degradation. In: Stoytcheva M, ed. Pesticides in the Modern World-Pests Control and Pesticides Exposure and Toxicity Assessment. Rijeka: Intech, 2011. 333-376
[47]  27 Rapaport D C. The Art of Molecular Dynamics Simulation. Cambridge: Cambridge University Press, 1998
[48]  28 Sagui C, Daren T A. Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct, 1999, 28: 155-179
[49]  29 Haran G. How, when and why proteins collapse: the relation to folding. Curr Opin Struct Biol, 2012, 22: 14-20
[50]  30 Haynie D T. Biological Thermodynamics. Cambridge: Cambridge University Press, 2001
[51]  31 Gibbs J W. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Conn Acad Arts Sci, 1873, 2: 382-404
[52]  32 Bryngelson J D, Onuchic J N, Socci N D, et al. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Protein Struct Funct Genet, 1995, 21: 167-195
[53]  33 Wales D J. Energy Landscapes. Cambridge: Cambridge University Press, 2003
[54]  34 Dill K A. Polymer principles and protein folding. Protein Sci, 1999, 8: 1166-1180
[55]  35 Amadei A, Linssen A B M, Berendsen H J C. Essential dynamics of proteins. Protein Struct Funct Genet, 1993, 17: 412-425
[56]  36 Tao Y, Rao Z H, Liu S Q. Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. J Biomol Struct Dyn, 2010, 28: 143-157
[57]  37 Kapon R, Nevo R, Reich Z. Protein energy landscape roughness. Biochem Soc Trans, 2008, 36: 1404-1408
[58]  38 Dill K A, Ozkan S B, Weikl T R, et al. The protein folding problem: when will it be solved? Curr Opin Struct Biol, 2007, 17: 342-346
[59]  39 Dill K A, Ozkan S B, Shell M S, et al. The protein folding problem. Annu Rev Biophys Biomol Struct, 2008, 37: 289-316
[60]  40 Levinthal C. Are there pathways for protein folding? J Chim Phys, 1968, 65: 44-45
[61]  41 Yang L Q, Ji X L, Liu S Q. The free energy landscape of protein folding and dynamics: a global view. J Biomol Struc Dyn, 2013, 31: 982-992
[62]  42 Zwanzig R, Szabo A, Bagchi B. Levinthal’s paradox. Proc Natl Acad Sci USA, 1992, 89: 20-22
[63]  43 Li W, Qin M, Tie Z, et al. Effects of solvents on the intrinsic propensity of peptide backbone conformations. Phys Rev E, 2011, 84: 041933
[64]  44 Anfinsen C B, Haber E, Sela M, et al. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA, 1961, 47: 1309-1314
[65]  45 Agashe V R, Shastry M C R, Udgaonkar J B. Initial hydrophobic collapse in the folding of barstar. Nature, 1995, 377: 754-757
[66]  46 Dill K A. Theory for the folding and stability of globular proteins. Biochemistry, 1985, 24: 1501-1509
[67]  47 Dill K A, Chan H S. From levinthal to pathways to funnels. Nat Struct Biol, 1997, 4: 10-19
[68]  48 Leopold P E, Montal M, Onuchic J N. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci USA, 1992, 89: 8721-8725
[69]  49 Dobson C M. The nature and significance of protein folding. In: Pain R H, ed. Mechanisms of Protein Folding. 2nd ed. Oxford: Oxford University Press, 2000. 1-33
[70]  50 Karplus M, Weaver D L. Protein-folding dynamics. Nature, 1976, 260: 404-406
[71]  51 Karplus M, Weaver D L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci, 1994, 3: 650-668
[72]  52 Kim P S, Baldwin R L. Specific intermediates in the folding reactions of small proteins and the mechanism of folding. Annu Rev Biochem, 1982, 51: 459-489
[73]  53 N?lting B, Agard D A. How general is the nucleation-condensation mechanism? Proteins, 2008, 73: 754-764
[74]  54 Yan Z, Wang J, Zhang Y, et al. Nucleation process in the folding of a domain-swapped dimer. Phys Rev E, 2010, 81: 021910
[75]  55 Dill K A, Fiebig K M, Chan H S. Cooperativity in protein-folding kinetics. Proc Natl Acad Sci USA, 1993, 90: 1942-1946
[76]  56 Dill K A, Bromberg S, Yue K, et al. Principles of protein folding—a perspective from simple exact models. Protein Sci, 1995, 4: 561-602
[77]  57 Sun L, Wang J, Wang W. Dissection of the zipping-and-assembly mechanism for folding of model proteins. Chinese Phys Lett, 2010, 27: 038702
[78]  58 Harrison S C, Durbin R. Is there a single pathway for the folding of a polypeptide chain? Proc Natl Acad Sci USA, 1985, 82: 4028-4030
[79]  59 Mittal A, Jayaram B, Shenoy S R, et al. A stoichiometry driven universal spatial organization of backbones of folded proteins: are there chargaff’s rules for protein folding? J Biomol Struct Dyn, 2010, 28: 133-142
[80]  60 Ji X L, Liu S Q. Is stoichiometry-driven protein folding getting out of thermodynamic control? J Biomol Struct Dyn, 2011, 28: 621-623
[81]  61 Onuchic J N, Luthey-Schulten Z, Wolynes P G. Theory of protein folding: the energy landscape perspective. Ann Rev Phys Chem, 1997, 48: 545-600
[82]  62 Onuchic J N, Wolynes P G, Luthey-Schulten Z, et al. Towards an outline of the topography of a realistic protein folding funnel. Proc Natl Acad Sci USA, 1995, 92: 3626-3630
[83]  63 Wolynes P G, Onuchic J N, Thirumalai D. Navigating the folding routes. Science, 1995, 267: 1619-1620
[84]  64 Li W, Terakawa T, Wang W, et al. Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2out-knot. Proc Natl Acad Sci USA, 2012, 109: 17789-17794
[85]  65 Ben-Naim A. Levinthal’s question revisited, and answered. J Biomol Struct Dyn, 2012, 30: 113-124
[86]  66 Mezei M. Chameleon sequences in the PDB. Protein Eng, 1998, 11: 411-414
[87]  67 Minor D L, Kim P S. Context-dependent secondary structure formation of a designed protein sequence. Nature, 1996, 380: 730-734
[88]  68 Wolfenden R. Experimental measures of amino acid hydrophobicity and the topology of transmembrane and globular proteins. J Gen Physiol, 2007, 129: 357-362
[89]  69 Cordes M H J, Davidsont A R, Sauer R T. Sequence space, folding and protein design. Curr Opin Struct Biol, 1996, 6: 3-10
[90]  70 Kamtekar S, Schiffer J M, Xiong H, et al. Protein design by binary patterning of polar and nonpolar amino acids. Science, 1993, 262: 1680-1685
[91]  71 Hecht M H, Das A, Go A, et al. De novo proteins from designed combinatorial libraries. Protein Sci, 2004, 13: 1711-1723
[92]  72 Ansari A, Berendzen J, Bowne S F, et al. Protein states and protein quakes. Proc Natl Acad Sci USA, 1985, 82: 5000-5004
[93]  73 Kwong P D, Wyatt R, Robinson J, et al. Structure of an HIV-1 gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 1998, 393: 648-659
[94]  74 Kwong P D, Wyatt R, Majeed S, et al. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure, 2000, 8: 1329-1339
[95]  75 Huang C C, Tang M, Zhang M Y, et al. Structure of a V3-containing HIV-1 gp120 core. Science, 2005, 310: 1025-1028
[96]  76 Huang C C, Lam S N, Acharya P, et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science, 2007, 317: 1930-1934
[97]  77 Pancera M, Majeed S, Ban Y A, et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci USA, 2010, 107: 1166-1171
[98]  78 Kwon Y D, Finzi A, Wu X, et al. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternaryinteractions and variable loops. Proc Natl Acad Sci USA, 2012, 109: 5663-5668
[99]  79 Chen B, Vogan E M, Gong H, et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature, 2005, 433: 834-841
[100]  80 柳树群, 符云新, 刘次全. 不同构象状态HIV-1 gp120分子运动特征及构象转换能力研究. 科学通报, 2007, 52: 2494-2506
[101]  81 Liu S Q, Liu S X, Fu Y X. Molecular motions of human HIV-1 gp120 envelope glycoproteins. J Mol Model, 2008, 14: 857-870
[102]  82 Perozzo R, Folkers G, Scapozza L. Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res, 2004, 24: 1-52
[103]  83 Ji X L, Liu S Q. Thinking into mechanism of protein folding and molecular binding. J Biomol Struct Dyn, 2011, 28: 995-996
[104]  84 Fischer E. Einfluss der configuration auf die wirkung der enzyme. Ber Dtsch Chem Ges, 1894, 27: 2984-2993

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133