全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

范可尼贫血症与DNA交联损伤修复

DOI: 10.1360/052014-51, PP. 387-396

Keywords: 范可尼贫血症,DNA交联损伤,范可尼贫血症基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

范可尼贫血症(FA)又称范可尼综合征,是一种常染色体或X染色体连锁的隐性遗传病.范可尼贫血症患者具有先天性发育异常、骨髓衰竭、高度癌症易感性等特征.尽管范可尼贫血症是一种在人群中发生比例仅为1:1000000~5:1000000的罕见遗传病,但它却是一个可以用来研究DNA损伤修复和肿瘤发生的重要模型.迄今为止,已经确定了15个范可尼贫血症基因(FA基因)以及一些范可尼贫血症相关基因.当15个FA基因中的任何一个发生突变,都会导致范可尼贫血症的发生.从这些基因发生突变的病人身上所分离得到的细胞则具有对DNA交联损伤试剂(如丝裂霉素C等)高度敏感,以及基因组不稳定的表型.在此,对目前所了解的FA基因所编码的FA蛋白参与DNA交联损伤修复的具体分子机制进行了回顾与阐述.

References

[1]  2 Park J W, Pitot H C, Strati K, et al. Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res, 2010, 70: 9959-9968
[2]  3 Auerbach A D. A test for Fanconi''s anemia. Blood, 1988, 72: 366-367
[3]  4 Kee Y, D''Andrea A D. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev, 2010, 24: 1680-1694
[4]  5 Kim H, D''Andrea A D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev, 2012, 26: 1393-1408
[5]  6 Moldovan G L, D''Andrea A D. To the rescue: the Fanconi anemia genome stability pathway salvages replication forks. Cancer Cell, 2012, 22: 5-6
[6]  7 D''Andrea A D. The Fanconi anemia/BRCA signaling pathway: disruption in cisplatin-sensitive ovarian cancers. Cell Cycle, 2003, 2: 290-292
[7]  8 Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet, 2007, 8: 735-748
[8]  9 Venkitaraman A R. Tracing the network connecting BRCA and Fanconi anaemia proteins. Nat Rev Cancer, 2004, 4: 266-276
[9]  10 Mirchandani K D, D''Andrea A D. The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res, 2006, 312: 2647-2653
[10]  11 Moldovan G L, D''Andrea A D. How the Fanconi anemia pathway guards the genome. Annu Rev Genet, 2009, 43: 223-249
[11]  12 de Winter J P, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res, 2009, 668: 11-19
[12]  13 Su X, Huang J. The Fanconi anemia pathway and DNA interstrand cross-link repair. Protein Cell, 2011, 2: 704-711
[13]  14 Romick-Rosendale L E, Lui V W, Grandis J R, et al. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res, 2013, 743-744: 78-88
[14]  15 Rio P, Bueren J A. FA core complex moves to chromatin. Blood, 2008, 111: 4837-4838
[15]  16 Ali A M, Pradhan A, Singh T R, et al. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood, 2012, 119: 3285-3294
[16]  17 Hodson C, Walden H. Towards a molecular understanding of the Fanconi anemia core complex. Anemia, 2012, 2012: 926787
[17]  18 Leung J W, Wang Y, Fong K W, et al. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc Natl Acad Sci USA, 2012, 109: 4491-4496
[18]  19 Garcia M J, Fernandez V, Osorio A, et al. Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis, 2009, 30: 1898-1902
[19]  20 Cole A R, Lewis L P, Walden H. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat Struct Mol Biol, 2010, 17: 294-298
[20]  33 Park J, Chung N G, Chae H, et al. FANCA and FANCG are the major Fanconi anemia genes in the Korean population. Clin Genet, 2013, 84: 271-275
[21]  34 Pulliam-Leath A C, Ciccone S L, Nalepa G, et al. Genetic disruption of both FANCC and FANCG in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood, 2010, 116: 2915-2920
[22]  35 Barroca V, Mouthon M A, Lewandowski D, et al. Impaired functionality and homing of FANCG-deficient hematopoietic stem cells. Hum Mol Genet, 2012, 21: 121-135
[23]  36 Kowal P, Gurtan A M, Stuckert P, et al. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J Biol Chem, 2007, 282: 2047-2055
[24]  37 de Winter J P, van der Weel L, de Groot J, et al. The Fanconi anemia protein FANCF forms a nuclear complex with FANCA, FANCC and FANCG. Hum Mol Genet, 2000, 9: 2665-2674
[25]  38 Huang M, Kim J M, Shiotani B, et al. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell, 2010, 39: 259-268
[26]  39 Harms H, Amft O, Tr Ster G. Estimating posture-recognition performance in sensing garments using geometric wrinkle modeling. IEEE Trans Inf Technol Biomed, 2010, 14: 1436-1445
[27]  40 Yan Z, Delannoy M, Ling C, et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell, 2010, 37: 865-878
[28]  41 Vandenberg C J, Gergely F, Ong C Y, et al. BRCA1-independent ubiquitination of FANCD2. Mol Cell, 2003, 12: 247-254
[29]  42 Lee K Y, Chung K Y, Koo H S. The involvement of FANCM, FANCI, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans. DNA Repair, 2010, 9: 374-382
[30]  43 Taniguchi T, Garcia-Higuera I, Andreassen P R, et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood, 2002, 100: 2414-2420
[31]  44 Ohashi A, Zdzienicka M Z, Chen J, et al. Fanconi anemia complementation group D2 (FANCD2) functions independently of BRCA2-and RAD51-associated homologous recombination in response to DNA damage. J Biol Chem, 2005, 280: 14877-14883
[32]  45 Gravells P, Hoh L, Solovieva S, et al. Reduced FANCD2 influences spontaneous SCE and RAD51 foci formation in uveal melanoma and Fanconi anaemia. Oncogene, 2013, 32: 5338-5346
[33]  46 Gordon S M, Alon N, Buchwald M. FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J Biol Chem, 2005, 280: 36118-36125
[34]  47 Kee Y, Kim J M, D''Andrea A D. Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev, 2009, 23: 555-560
[35]  48 Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and aTR-NBS1-FANCD2 pathways. EMBO J, 2004, 23: 1178-1187
[36]  49 Sobeck A, Stone S, Landais I, et al. The Fanconi anemia protein FANCM is controlled by FANCD2 and the ATR/ATM pathways. J Biol Chem, 2009, 284: 25560-25568
[37]  50 Hovest M G, Krieg T, Herrmann G. Differential roles for Chk1 and FANCD2 in ATR-mediated signalling for psoralen photoactivation-induced senescence. Exp Dermatol, 2011, 20: 883-889
[38]  51 Ishiai M, Kitao H, Smogorzewska A, et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol, 2008, 15: 1138-1146
[39]  52 Alpi A, Langevin F, Mosedale G, et al. UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol Cell Biol, 2007, 27: 8421-8430
[40]  72 Munoz I M, Hain K, Declais A C, et al. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell, 2009, 35: 116-127
[41]  73 Andersen S L, Bergstralh D T, Kohl K P, et al. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol Cell, 2009, 35: 128-135
[42]  74 Mullen J R, Kaliraman V, Ibrahim S S, et al. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics, 2001, 157: 103-118
[43]  75 Wu H I, Brown J A, Dorie M J, et al. Genome-wide identification of genes conferring resistance to the anticancer agents cisplatin, oxaliplatin, and mitomycin C. Cancer Res, 2004, 64: 3940-3948
[44]  76 Lee W, St Onge R P, Proctor M, et al. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet, 2005, 1: e24
[45]  77 Thompson L H, Hinz J M, Yamada N A, et al. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environ Mol Mutagen, 2005, 45: 128-142
[46]  78 Lehmann A R, Niimi A, Ogi T, et al. Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair, 2007, 6: 891-899
[47]  79 McHugh P J, Sones W R, Hartley J A. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol Cell Biol, 2000, 20: 3425-3433
[48]  80 Niedzwiedz W, Mosedale G, Johnson M, et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell, 2004, 15: 607-620
[49]  81 Lawrence C W. Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair, 2002, 1: 425-435
[50]  82 Sarkar S, Davies A A, Ulrich H D, et al. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J, 2006, 25: 1285-1294
[51]  83 Raschle M, Knipscheer P, Enoiu M, et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell, 2008, 134: 969-980
[52]  84 Yan Z, Guo R, Paramasivam M, et al. A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol Cell, 2012, 47: 61-75
[53]  85 Kim H, Yang K, Dejsuphong D, et al. Regulation of Rev1 by the Fanconi anemia core complex. Nat Struct Mol Biol, 2012, 19: 164-170
[54]  86 Pace P, Mosedale G, Hodskinson M R, et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science, 2010, 329: 219-223
[55]  87 Adamo A, Collis S J, Adelman C A, et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol Cell, 2010, 39: 25-35
[56]  88 Bunting S F, Nussenzweig A. Dangerous liaisons: Fanconi anemia and toxic nonhomologous end joining in DNA crosslink repair. Mol Cell, 2010, 39: 164-166
[57]  89 Bunting S F, Callen E, Kozak M L, et al. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol Cell, 2012, 46: 125-135
[58]  1 Alter B P, Greene M H, Velazquez I, et al. Cancer in Fanconi anemia. Blood, 2003, 101: 2072
[59]  21 Longerich S, San Filippo J, Liu D, et al. Fanci binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J Biol Chem, 2009, 284: 23182-23186
[60]  22 Hodson C, Cole A R, Lewis L P, et al. Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway. J Biol Chem, 2011, 286: 32628-32637
[61]  23 Machida Y J, Machida Y, Chen Y, et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol Cell, 2006, 23: 589-596
[62]  24 Alpi A F, Pace P E, Babu M M, et al. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by UBE2T, FANCL, and FANCI. Mol Cell, 2008, 32: 767-777
[63]  25 Singh T R, Saro D, Ali A M, et al. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol Cell, 2010, 37: 879-886
[64]  26 Wang W, Guo Q, Shtykova E V, et al. Structural peculiarities of the (MHF1-MHF2)4 octamer provide a long DNA binding patch to anchor the MHF-FANCM complex to chromatin: a solution SAXS study. FEBS Lett, 2013, 587: 2912-2917
[65]  27 Collis S J, Ciccia A, Deans A J, et al. FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. Mol Cell, 2008, 32: 313-324
[66]  28 Wang Y, Leung J W, Jiang Y, et al. FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol Cell, 2013, 49: 997-1009
[67]  29 Ali A M, Singh T R, Meetei A R. FANCM-FAAP24 and FANCJ: FA proteins that metabolize DNA. Mutat Res, 2009, 668: 20-26
[68]  30 Horejsi Z, Collis S J, Boulton S J. FANCM-FAAP24 and HCLK2: roles in ATR signalling and the Fanconi anemia pathway. Cell Cycle, 2009, 8: 1133-1137
[69]  31 Yang H, Zhang T, Tao Y, et al. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair. Nucleic Acids Res, 2013, 41: 10573-10583
[70]  32 Ling C, Ishiai M, Ali A M, et al. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J, 2007, 26: 2104-2114
[71]  53 Parmar K, Kim J, Sykes S M, et al. Hematopoietic stem cell defects in mice with deficiency of FANCD2 or USP1. Stem Cells, 2010, 28: 1186-1195
[72]  54 Murai J, Yang K, Dejsuphong D, et al. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol Cell Biol, 2011, 31: 2462-2469
[73]  55 Garcia-Santisteban I, Zorroza K, Rodriguez J A. Two nuclear localization signals in USP1 mediate nuclear import of the USP1/UAF1 complex. PLoS One, 2012, 7: e38570
[74]  56 Oestergaard V H, Langevin F, Kuiken H J, et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell, 2007, 28: 798-809
[75]  57 Kim J M, Parmar K, Huang M, et al. Inactivation of murine USP1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell, 2009, 16: 314-320
[76]  58 Lee K Y, Yang K, Cohn M A, et al. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1. J Biol Chem, 2010, 285: 10362-10369
[77]  59 Knipscheer P, Raschle M, Smogorzewska A, et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science, 2009, 326: 1698-1701
[78]  60 Liu T, Ghosal G, Yuan J, et al. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science, 2010, 329: 693-696
[79]  61 O''Donnell L, Durocher D. DNA repair has a new FAN1 club. Mol Cell, 2010, 39: 167-169
[80]  62 Smogorzewska A, Desetty R, Saito T T, et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell, 2010, 39: 36-47
[81]  63 MacKay C, Declais A C, Lundin C, et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell, 2010, 142: 65-76
[82]  64 Kratz K, Schopf B, Kaden S, et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell, 2010, 142: 77-88
[83]  65 Yoshikiyo K, Kratz K, Hirota K, et al. KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proc Natl Acad Sci USA, 2010, 107: 21553-21557
[84]  66 Cybulski K E, Howlett N G. FANCP/SLX4: a Swiss army knife of DNA interstrand crosslink repair. Cell Cycle, 2011, 10: 1757-1763
[85]  67 Kang M H. Cancel all Hollidays for SLX4 mutations: identification of a new Fanconi anemia subtype, FANCP. Clin Genet, 2011, 80: 28-30
[86]  68 Landwehr R, Bogdanova N V, Antonenkova N, et al. Mutation analysis of the SLX4/FANCP gene in hereditary breast cancer. Breast Cancer Res Treat, 2011, 130: 1021-1028
[87]  69 Svendsen J M, Harper J W. GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution. Genes Dev, 2010, 24: 521-536
[88]  70 Ohouo P Y, Bastos de Oliveira F M, Almeida B S, et al. DNA damage signaling recruits the Rtt107-Slx4 scaffolds via Dpb11 to mediate replication stress response. Mol Cell, 2010, 39: 300-306
[89]  71 Svendsen J M, Smogorzewska A, Sowa M E, et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell, 2009, 138: 63-77
[90]  90 Nakanishi K, Cavallo F, Perrouault L, et al. Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol, 2011, 18: 500-503
[91]  91 Zhang N, Liu X, Li L, et al. Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA Repair, 2007, 6: 1670-1678
[92]  92 Moynahan M E, Pierce A J, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell, 2001, 7: 263-272
[93]  93 Howlett N G, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science, 2002, 297: 606-609
[94]  94 French C A, Masson J Y, Griffin C S, et al. Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability. J Biol Chem, 2002, 277: 19322-19330
[95]  95 Liu Y, Tarsounas M, O''Regan P, et al. Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem, 2007, 282: 1973-1979
[96]  96 Vaz F, Hanenberg H, Schuster B, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet, 2010, 42: 406-409
[97]  97 Orlowski R Z, Kuhn D J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res, 2008, 14: 1649-1657

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133