全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

组织工程的突破与挑战—组织工程国家工程中心科研进展

DOI: 10.1360/052014-9, PP. 132-138

Keywords: 再生医学,组织工程,干细胞,生物材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

组织工程技术已被普遍认为是解决组织、器官缺损修复与功能重建的有效手段,它的飞速发展依赖于细胞学、材料学、工程学、临床医学等多学科的交叉渗透.作为组织工程的三大核心,种子细胞、生物材料、组织构建各方面的突破,为组织工程技术的发展奠定了基础.组织工程国家工程中心近年来围绕上述核心开展了系列研究,通过研究胚胎干细胞、成体干细胞、同种异体干细胞、以及发育同源细胞替代的探索,为解决种子细胞来源问题提供了多种选择;生物支架材料的开发,为细胞增殖分化、组织再生提供理想的支持与空间,而生物反应器的开发与应用,进一步提高了组织构建技术,为促进组织的体外形成、重塑和功能成熟创造了条件.在此基础上,开展了大动物体内组织构建和缺损修复的研究,形成了以应用为目标的研究特色,并成功将部分技术应用于临床治疗.本文将对组织工程国家工程中心已有进展做简单介绍并对面临的挑战进行分析.

References

[1]  5 李东, 柳向东, 柴岗, 等. 利用人骨髓基质干细胞异位构建组织工程化骨的实验研究. 中华整形外科杂志, 2007, 23: 409-411
[2]  6 Zhu L, Liu W, Cui L, et al. Tissue-engineered bone repair of goat femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng, 2006, 12: 423-433
[3]  7 Weng Y, Wang M, Liu W, et al. Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Eng, 2006, 12: 1503-1513
[4]  8 Liu G, Zhao L, Cui L, et al. Tissue-engineered bone formation using human bone marrow stromal cells and novel β-tricalcium phosphate. Biomed Mater, 2007, 2: 78-86
[5]  9 Yuan J, Cui L, Zhang W J, et al. Repair of Canine mandibular bone defects with bone marrow stromal cells and porus β-tricalcium phosphate. Biomaterials, 2007, 28: 1005-1013
[6]  10 Liu G, Zhao L, Zhang W, et al. Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate. J Mater Sci Mater Med, 2008, 19: 2367-2376
[7]  11 Zhu L, Chuanchang D, Wei L, et al. Enhanced healing of goat femur-defect using bmp7 gene-modified bmscs and load-bearing tissue-engineered bone. J Orthop Res, 2010, 28: 412-418
[8]  12 Yuan J, Zhang W J, Liu G, et al. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Eng Part A, 2010, 16: 1385-1394
[9]  13 Cui L, Yin S, Liu W, et al. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng, 2007, 13: 1185-1195
[10]  14 Cui L, Liu B, Liu G, et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials, 2007, 28: 5477-5486
[11]  15 Liu Q, Cen L, Zhou H, et al. The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng Part A, 2009, 15: 3487-3497
[12]  16 Liu G, Li Y, Sun J, et al. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue Eng Part A, 2010, 16: 971-982
[13]  17 Liu G, Ye X, Zhu Y, et al. Osteogenic differentiation of GFP-labeled human umbilical cord blood derived mesenchymal stem cells after cryopreservation. Cryobiology, 2011, 63: 125-128
[14]  18 Chen Y, Ai A, Tang Z Y, et al. Mesenchymal-like stem cells derived from human parthenogenetic embryonic stem cells. Stem Cells Dev, 2012, 21: 143-151
[15]  19 Yin H, Cui L, Liu G, et al. Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology, 2009, 59: 180-187
[16]  20 Wang H, Liu G, Zhou G, et al. Comparative investigation of viability, metabolism and osteogenic capability of tissue-engineered bone preserved in sealed osteogenic media at 37℃ and 4℃. Biomed Mater, 2010, 5: 035010
[17]  21 Liu K, Zhou G D, Liu W, et al. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials, 2008, 29: 2183-2192
[18]  22 Liu X, Sun H, Yan D, et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials, 2010, 31: 9406-9414
[19]  23 Gong Y Y, Xue J X, Zhang W J, et al. A sandwish model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials, 2011, 32: 2265-2273
[20]  24 Xue J X, Gong Y Y, Zhou G D, et al. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials, 2012, 33: 5832-5840
[21]  25 谢峰, 张文杰, 陈凡凡, 等. 成熟软骨细胞促进小鼠胚胎干细胞向软骨分化. 中国科学C辑: 生命科学, 2008, 38: 783-786
[22]  26 Zhao G, Yin S, Liu G, et al. In vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide. Biomaterials, 2009, 30: 3241-3250
[23]  27 Yin S, Cen L, Wang C, et al. Chondrogenic transdifferentiation of human dermal fibroblasts stimulated with cartilage-derived morphogenetic protein 1. TISSUE ENG PART A, 2010, 16: 1633-1643
[24]  28 Jiang T, Liu W, Lv X, et al. Potent in vitro chondrogenesis of CD105 enriched human adipose-derived stem cells. Biomaterials, 2010, 31: 3564-3571
[25]  29 Liu Y, Chen F, Liu W, et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng, 2002, 8: 709-721
[26]  30 Zhou G, Liu W, Cui L, et al. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng, 2006, 12: 3209-3221
[27]  31 Liu Y, Zhang L, Zhou G, et al. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials, 2010, 31: 2176-2183
[28]  32 Yan D, Zhou G, Zhou X, et al. The impact of low levels of collagen IX and pyridinoline on the mechanical properties of in vitro engineered cartilage. Biomaterials, 2009, 30: 814-821
[29]  33 Wu Y, Zhu L, Jiang H, et al. Engineering cartilage substitute with specific size and shape using porous high-density polyethylene (HDPE) as internal support. J Plast Reconstr Aesthet Surg, 2010, 63: e370-e375
[30]  34 Zhu L, Wu Y, Jiang H, et al. Engineered cartilage with internal porous high-density polyethylene support from bone marrow stromal cells: a preliminary study in nude mice. Br J Oral Maxillofac Surg, 2010, 48: 462-465
[31]  35 Zhang Y, Yang F, Liu K, et al. The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials, 2012, 33: 2926-2935
[32]  36 Cao Y, Liu Y, Liu W, et al. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg, 2002, 110: 1280-1289
[33]  37 Wei X, Zhang P, Wang W, et al. Use of polyglycolic acid unwoven and woven fibers for tendon engineering in vitro. Key Engineering Material, 2005, 288: 7-10
[34]  38 Zhang Y, Wang B, Zhang W J, et al. Enhanced proliferation capacity of porcine tenocytes in low O2 tension culture. Biotechnol Lett, 2010, 32: 181-187
[35]  39 Deng D, Liu W, Xu F, et al. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials, 2009, 30: 6724-6730
[36]  49 Shen G, Tsung H C, Wu C F, et al. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells. Cell Res, 2003, 13: 335-3341
[37]  50 Wang C, Cen L, Yin S, et al. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials, 2010, 31: 621-630
[38]  51 Wang C, Yin S, Cen L, et al. Differentiation of adipose-derived stem cells into contractile smooth muscle cells induced by transforming growth factor-b1 and bone morphogenetic protein-4. Tissue Eng Part A, 2010, 16: 1201-1213
[39]  52 Hu X, Lui W, Cui L, et al. Tissue engineering of nearly transparent corneal stroma. Tissue Eng, 2005, 11: 1710-1717
[40]  53 Zhang Y Q, Zhang W J, Liu W, et al. Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea. Tissue Eng Part A, 2008, 14: 295-303
[41]  1 Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260: 920-926
[42]  2 Cao Y, Vacanti J P, Paige K T, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg, 1997, 100: 297-302
[43]  3 Shang Q, Wang Z, Liu W, et al. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrrow stromal cells. J Craniofac Surg, 2001, 12: 586-593
[44]  4 Weng Y, Cao Y, Silva C A, et al. Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction. J Oral Maxillofac Surg, 2001, 59: 185-190
[45]  40 Zhu J, Li J, Wang B, et al. The regulation of phenotype of cultured tenocytes by microgrooved surface structure. Biomaterials, 2010, 31: 6952-6958
[46]  41 Jiang Y, Liu H, Li H, et al. A proteomic analysis of engineered tendon formation under dynamic mechanical loading in vitro. Biomaterials, 2011, 32: 4085-4095
[47]  42 Liu W, Chen B, Deng D, et al. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng, 2006, 12: 775-788
[48]  43 Cao D, Liu W, Wei X, et al. In vitro tendon engineering with avian tenocytes and polyglycolic acides: a preliminary report. Tissue Eng, 2006, 12: 1369-1377
[49]  44 Wang B, Liu W, Zhang Y, et al. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials, 2008, 29: 2954-2961
[50]  45 Hu K, Shi H, Zhu J, et al. Compressed collagen gel as the scaffold for skin engineering. Biomed Microdevices, 2010, 12: 627-635
[51]  46 Chen F, Zhang W, Wu W, et al. Cryopreservation of tissue-engineered epithelial sheets in trehalose. Biomaterials, 2011, 32: 8426-8435
[52]  47 Yang J, Woo S L, Yang G, et al. Construction and clinical application of a human tissue-engineered epidermal membrane. Plast Reconstr Surg, 2010, 125: 901-909
[53]  48 Xu Z C, Zhang W J, Li H, et al. Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials, 2008, 29: 1464-1472

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133