全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胃肠癌发生和预防中表观遗传修饰与信号通路相关研究

DOI: 10.1360/052013-355, PP. 125-131

Keywords: 胃肠癌发生与预防,表观遗传修饰,信号通路

Full-Text   Cite this paper   Add to My Lib

Abstract:

仁济消化学科胃肠肿瘤研究团队是教育部“创新团队”,长期从事消化系肿瘤发生机制和防治研究.在胃癌发生和预防中的表观遗传学与信号通路相关研究中作了一定工作.初步明确了我国胃癌癌前疾病慢性萎缩性胃炎的转归情况;建立并验证了预测慢性萎缩性胃炎发生与转归的数学模型.分析了我国症状人群中大肠癌癌前疾病大肠腺瘤患病情况及变迁状况,腺瘤内镜下摘除后再发情况.进一步明确了胃肠癌发生中包括DNA甲基化、组蛋白修饰和非编码RNA(miRNA和天然反义转录本)的作用;阐明了与细胞增殖相关的JAK/STAT信号通路的作用意义;并初步证实了上述表观遗传修饰和信号通路的相互关系.证明了大肠腺瘤患者血浆叶酸和粪便短链脂肪酸及产短链脂肪酸的肠道菌群情况,为有效得干预预防奠定基础.多中心随机对照研究证明,叶酸可有效预防超过50岁人群的大肠腺瘤的发生,且作用与干预前后叶酸含量上升情况有关.并以第1完成单位和第1完成人获2005年上海市科技进步一等奖(“表观遗传修饰及其在胃癌发生和预防中的应用”)、2007年中华医学科技一等奖和2008年国家科技进步二等奖(“叶酸和丁酸盐在胃肠癌发生和预防中的作用”)及2014年教育部高等学校科学研究优秀成果(科技进步)一等奖.

References

[1]  3 Gao Q Y, Wang Z H, Hao E Y, et al. A novel model might predict the risk of chronic atrophic gastritis: a multicenter prospective study in China. Scand J Gastroenterol, 2012, 47: 509-517
[2]  4 Chen H M, Weng Y R, Jiang B, et al. Colonoscopy findings of colorectal adenoma and cancer in symptomatic patients in china between 1990 and 2009. J Digest Dis, 2011, 12: 371-378
[3]  5 Martinez M E, Baron J A, Lieberman D A, et al. A pooled analysis of advanced colorectal neoplasia diagnoses after colonoscopic polypectomy. Gastroenterology, 2009, 136: 832-841
[4]  6 Wang P, Wang Y C, Chen X Y, et al. CTHRC1 is upregulated by promoter demethylation and TGF-β1 and may associated with metastasis in human gastric cancer. Cancer Sci, 2012, 103: 1027-1033
[5]  7 Wang P, Fang J Y. XRCC1 down-regulated through promoter hypermethylation is involved in human gastric carcingenesis. J Digest Dis, 2010, 11: 343-351
[6]  8 Du W, Wang S, Zhou Q, et al. ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer. Oncogene, 2013, 32: 3319-3328
[7]  9 Tian X Q, Sun D F, Zhao S L, et al. ZNF278, a potential oncogene in human colorectal cancer. Acta Biochim Biophys Sin, 2008, 40: 289-296
[8]  10 Fang J Y, Chen Y X, Lu J, et al. Epigenetic modification regulates expression of tumor-associated genes and cell cycle in human colon cancer cell lines Colo-320 and SW1116. Cell Res, 2004, 13: 217-226
[9]  11 Fu L, Chen L, Yang J, et al. HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis, 2012, 33: 1664-1673
[10]  12 Tang J T, Wang J L, Hong J, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis, 2011, 32: 1207-1215
[11]  13 Cui Y, Su W Y, Xing J, et al. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One, 2011, 6: e25872
[12]  14 Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest, 2008, 88: 1358-1366
[13]  15 Gao C, Zhang Z, Liu W, et al. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer, 2010, 116: 41-49
[14]  16 Su W Y, Li J T, Cui Y, et al. Bidirectional regulation between WDR83 and its natural antisense transcript DHPS in gastric cancer. Cell Res, 2012, 22: 1374-1389
[15]  17 Fang J Y, Richardson B C. The MAPK signaling pathway and human colorectal cancer. Lancet Oncol, 2005, 6: 322-327
[16]  18 Lu R, Wang X, Chen Z F, et al. Inhibition of the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway decrease DNA methylation in colon cancer cells. J Biol Chem, 2007, 282: 12249-12259
[17]  19 Zhao S L, Hong J, Xie Z Q, et al. TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells. PLoS One, 2011, 6: e23262
[18]  20 Weng Y R, Kong X, Yu Y N, et al. The role of ERK2 in colorectal carcinogenesis is partly regulated by TRAPPC4. Mol Carcinogen, 2013, doi 10.1002/mc.22031
[19]  21 Kong X, Qian J, Chen L S, et al. Synbindin contributes to malignant phenotypes of gastric cancer by activating ERK on the Golgi. J Natl Cancer Inst, 2013, 105: 1738-1749
[20]  22 Xiong H, Zhang Z G, Tian X Q, et al. Inhibition of JAK1, JAK2 and STAT3 signaling induces apoptosis, cell cycle arrest and reduces tumor cell invasion in colorectal cancer cells. Neoplasia, 2008, 10: 287-297
[21]  23 Xiong H, Du W, Wang J L, et al. Constitutive activation of STAT3 is predictive of poor prognosis in human gastric cancer. J Mol Med, 2012, 90: 1037-1046
[22]  24 Xiong H, Zhang Z G, Liang Q C, et al. Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells. Lab Invest, 2009, 89: 717-725
[23]  25 Du W, Wang Y C, Su W Y, et al. STAT5 isoforms play important role in colorectal cancer preferentially associated with STAT5b. J Cell Physiol, 2012, 227: 2421-2429
[24]  26 Du W, Hong J, Wang Y C, et al. Inhibition of JAK2/STAT3 signaling induces colorectal cancer cell apoptosis via mitochondrial pathway. J Cell Mol Med, 2012, 16: 1878-1888
[25]  27 Xiong H, Du W, Lin Y W, et al. Crosstalk between STAT3 signaling and COX-2 in Helicobacter pylori-associated human gastric tumorigenesis. Int J Cancer, 2013, doi: 10.1002/ijc.28539
[26]  28 Xiong H, Hong J, Du W, et al. Roles of STAT3 and ZEB1 in E-cadherin downregulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem, 2012, 287: 5819-5832
[27]  29 Xiong H, Chen Z F, Liang Q C, et al. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signaling. J Cell Mol Med, 2009, 13: 3668-3679
[28]  30 Xiong H, Du W, Zhang Y J, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinogen, 2012, 51: 174-184
[29]  31 Lin Y W, Ren L L, Xiong H, et al. Role of STAT3 and vitamin D receptor in EZH2-mediated invasion of human colorectal cancer. J Pathol, 2013, 230: 277-290
[30]  32 Xu J, Zhou X, Wang J, et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep, 2013, 3: 1526-1538
[31]  33 Zhang Y J, Zhao S L, Dai Q, et al. Combined inhibition of Dnmt and mTOR signaling inhibits formation and growth of colorectal cancer. Int J Colorectal Dis, 2009, 24: 629-639
[32]  34 Zhang Y J, Dai Q, Tian X Q, et al. mTOR signal pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol, 2009, 16: 2617-2628
[33]  1 郑荣寿, 张思维, 吴良有, 等. 中国肿瘤登记地区2008年肿瘤发病和死亡资料分析. 中国肿瘤, 2012, 21: 1-12
[34]  2 Chooi E Y H, Chen H M, Shen L, et al. Chronic atrophy gastritis is a progressive disease: an analysis reports in Shanghai, China from 1985~2009. Singapore Med J, 2012, 53: 318-324
[35]  35 Lu R, Wang X, Sun D F, et al. Folic acid and sodium butyrate prevent tumorigenesis in a mouse model of colorectal cancer. Epigenetics, 2008, 3: 330-335
[36]  36 Lin Y W, Wang J L, Chen H M, et al. Folic acid supplementary reduce the incidence of adenocarcinoma in a mouse model of colorectal cancer: microarray gene expression profile. J Exp Clin Cancer Res, 2011, 30: 116
[37]  37 Chen H M, Lin Y W, Wang J L, et al. Butyrate-regulated genes in dimethylhydrazine-induced colorectal cancer in mice. Nutr Cancer, 2013, 65: 1171-1183
[38]  38 Xiao S D, Meng X J, Shi Y, et al. Interventional study of high dose folic acid in gastric carcinogenesis in beagles. Gut, 2002, 50: 61-64
[39]  39 Wang Y C, Wang J L, Kong X, et al. CD24, an early event of gastric carcinogenesis, induces gastric cancer progression via STAT3 activation. Apoptosis, 2013, doi: 10.1007/s10495-013-0949-9
[40]  40 Wang J L, Lin Y W, Chen H M, et al. Calcium prevents tumorigenesis in a mouse model of colorectal cancer. PLoS One, 2011, 6: e22566
[41]  41 Xu J, Wang J L, Xu B, et al. Colorectal cancer cells refractory to anti-VEGF treatment are vulnerable to glycolytic blockade due to persistent impairment of mitochondria. Mol Cancer Ther, 2013, 12: 717-724
[42]  42 Wu S, Lao X Y, Sun T T, et al. Downregulation of ZFX reduces the tumorigenicity of gastric cancer cells in vitro and in vivo via inhibiting the ERK-MAPK pathway. Cancer Lett, 2013, 337: 293-300
[43]  43 Chen H M, Yu Y N, Wang J L, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr, 2013, 97: 1044-1052
[44]  44 Zhu S, Mason J, Shi Y, et al. The effect of folic acid on the development of stomach and other gastrointestinal cancers. Chin Med J, 2003, 116: 15-19
[45]  45 Gao Q Y, Chen H M, Chen Y X, et al. Folic acid prevents the initial of sporadic colorectal adenoma in the elderly: a randomized clinical trial. Cancer Prev Res, 2013, 6: 744-752

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133