1 Bazin M. Mathematics in Microbiology. London: Academic Press, 1983. Chapter 2
[2]
2 Turanyi T, Berces T, Vajda S. Reaction rate analysis of complex kinetics systems. Int J Chem Kinet kinetics, 1989, 21: 83-99
[3]
3 Tsuchiya H M, Fredrickson A G, Aris R. Dynamics of microbial cell populations. Adv Chem Eng, 1966, 6: 125-206
[4]
4 Ramkrishna D. Statistical model of cell populations. Adv Biochem Eng, 1979, 11: 1-47
[5]
5 Neidhardt F C. Bacterial growth: constant obsession with dN/dt. J Bacteriol, 1999, 181: 7405-7408
[6]
6 Ferenci T. Growth of bacterial cultures'' 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Res Microbiol, 1999, 150: 431-438
[7]
7 杨纪珂, 齐翔林, 陈霖. 生物数学概论. 北京: 科学出版社, 1982. 第16章
[8]
8 Chemov N, Lesort C, Simanyi N. On the complexity of curve fitting algorithms. J Complexity, 2004, 20: 484-492
39 Perkampus H H, Grinter H C, Threlfall T L. UV-Vis Spectroscopy and Its Application. Berlin: Springer-Verlag, 1992
[11]
40 Motulsky H J, Christopoulos A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. New York: Oxford University Press, 2004. 134-159
[12]
41 Quinn G P, Keough M J. Experimental Design and Data Analysis for Biologist. Cambridge: The Press Syndicate of the University of Cambrige, 2002
[13]
42 Haefner J W. Modeling Biological System: Principles And Application. 2nd ed. New York: Springer Science+Business Media, Inc, 2005. Part 1 and 2
44 Duan X Y, Liu S Y, Gao P J, et. al. Volumetric productivity improvement for endoglucanase of Trichoderma pseudokoingii S-38. J Appl Microbiol, 2004, 96: 772-776
[16]
45 Dym C L. Principles of Mathematical Modeling. 2nd ed. San Diego, London, Burlington: Elsevier Academic Press, 2004. Chapter 8
[17]
46 Quackenbush J. Microarray data normalization and transformation. Nat Genet, 2002, 32: 496-501
48 Harrington P B, Urbas A, Tandler P J. Two-dimensional correlation analysis. Chemom Intell Lab Syst, 2000, 50: 149-174
[20]
10 Zervos C. On the validity of using semilogarithmic plots to determine initial velocity of enzyme-catalyzed reactions. J Theor Biol, 1975, 50: 253-258
[21]
11 Allison R D, Purich D L. Practical considerations in the design of initial velocity enzyme rate assays. Methods Enzymol, 1979, 63: 3-22
[22]
12 Hibino T. Nonfixed relationship of the Michaelis constant and maximum velocity with their corresponding rate constants. J Biol Chem, 2005, 280: 30671-30680
[23]
13 Kuo Y H, Scm M S. Extrapolation of correlation between 2 variables in 4 general medical journals. JAMA-J Am Med Assoc, 2002, 287: 2815-2817
21 Wang L S, Zhang Y Z, Gao P J. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng, 2006, 93: 443-456
[32]
22 Wu B, Zhao Y, Gao P J. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochimica et Biophysica Sinica, 2006, 38: 372-378
[33]
23 Wu B, Wang L S, Gao P J. The combined effects of temperature and assay time on the catalytic ability and stability of 1,4-β-D-glucancellobiohydrolase I. Enzyme Microb Technol, 2008, 43: 237-244
[34]
24 Zhang H Q, Wang L S, Gao P J. Use of the contour approach for visualizing the dynamic behavior of intermediates during O-nitrophenyl-β-D-galactoside hydrolysis by b-galactosidase. Process Biochem, 2009, 44: 1374-1380
[35]
25 Wang L S, Zhang Y Z, Gao P J. A novel function for the cellulose binding module of cellubiohydrolase I. Sci China Life Sci, 2008, 51: 620-629
[36]
26 Bothe D. Instantaneous limits of reversible chemical reactions in presence of macroscopic convection. J Differ Equations, 2003, 193: 27-48
[37]
27 Bronshtein I N, Semendyayev K A. Handbook of Mathematics. 4th ed. New York: Springer-Verlag, 2004
[38]
28 Parchevsky K V, Parchcevsky V P. Determination of instantaneous growth rates using a cubic spline approximation. Thermochim Acta, 1998, 309: 181-192
[39]
29 Maccallum K J, Zhang J M. Curve-smoothing techniques using S-spline. Computer J, 1986, 29: 564-569
32 Elfwing A, LeMarc Y, Baramyi J. Observing growth and division of large numbers of individual bacteria by image analysis. Appl Environ Microbiol, 2004, 70: 675-678
34 Henson M A. Dynamic modeling of microbial cell populations. Curr Opin Biotechnol, 2003, 14: 460-467
[45]
35 Spratt B G, Maiden M C T. Bacterial population genetics, evolution, and epidemiology. Philos Trans R Soc B-Biol Sci, 1999, 354: 701-710
[46]
36 Field R J, Noyes R M. Oscillatory chemical reactions. Ann Rev Phys Chem, 1974, 25: 95-119
[47]
37 Duboc P, Stockar U. Modeling of oscillating cultivations of Saccharomyces cerevisiae: identification of population structure and expansion kinetics based on on-line measurements. Chem Eng Science, 2000, 55: 149-160
[48]
38 Mallette M F. Evaluation of growth by physical and chemical means. In: Norris J R, Ribbons D W, eds. Method in Microbiology. London, New York: Academic Press, 1969. 552-556