全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

构建限制性培养条件下细菌群体生长模型的探讨

DOI: 10.1360/052013-238, PP. 185-196

Keywords: 瞬时速率,瞬时增量,菌群增长动力学,倍增时间,体积生产效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

依据E.coli菌株在摇瓶和发酵罐培养条件下菌群增长过程光密度值的变化,在改进了数据平滑和微分求导方法的基础上,以瞬时速率和瞬时增量为目标函数表征菌群增长的动力学过程.瞬时速率表现为指数衰减模式,而瞬时增量的过程曲线因接种量而异,由它们所表征的生长动力学过程都不存在延迟期和稳定期.动力学曲线的形状由接种物中含有的处于分裂状态的细胞数所决定,它是菌群内源性的增长能力(来自细胞分裂的连续发生)和由增长引发的外源性阻抑力(营养物质的减少和代谢产物的增加)相互作用的结果.由瞬时速率和瞬时增量还可推导出菌群增长的倍增时间及体积生产效率等参量.研究结果可为解决logistic方程和Monod方程在拟合菌群增长过程曲线时遇到的不确定性等难题提供有效的数学分析方法.

References

[1]  1 Bazin M. Mathematics in Microbiology. London: Academic Press, 1983. Chapter 2
[2]  2 Turanyi T, Berces T, Vajda S. Reaction rate analysis of complex kinetics systems. Int J Chem Kinet kinetics, 1989, 21: 83-99
[3]  3 Tsuchiya H M, Fredrickson A G, Aris R. Dynamics of microbial cell populations. Adv Chem Eng, 1966, 6: 125-206
[4]  4 Ramkrishna D. Statistical model of cell populations. Adv Biochem Eng, 1979, 11: 1-47
[5]  5 Neidhardt F C. Bacterial growth: constant obsession with dN/dt. J Bacteriol, 1999, 181: 7405-7408
[6]  6 Ferenci T. Growth of bacterial cultures'' 50 years on: towards an uncertainty principle instead of constants in bacterial growth kinetics. Res Microbiol, 1999, 150: 431-438
[7]  7 杨纪珂, 齐翔林, 陈霖. 生物数学概论. 北京: 科学出版社, 1982. 第16章
[8]  8 Chemov N, Lesort C, Simanyi N. On the complexity of curve fitting algorithms. J Complexity, 2004, 20: 484-492
[9]  9 洪楠. Logistic曲线参数的一个最佳估算方法. 生物数学学报, 1994, 9: 148-152
[10]  39 Perkampus H H, Grinter H C, Threlfall T L. UV-Vis Spectroscopy and Its Application. Berlin: Springer-Verlag, 1992
[11]  40 Motulsky H J, Christopoulos A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. New York: Oxford University Press, 2004. 134-159
[12]  41 Quinn G P, Keough M J. Experimental Design and Data Analysis for Biologist. Cambridge: The Press Syndicate of the University of Cambrige, 2002
[13]  42 Haefner J W. Modeling Biological System: Principles And Application. 2nd ed. New York: Springer Science+Business Media, Inc, 2005. Part 1 and 2
[14]  43 宋霞, 谭远德, 宋明等. 具有初始效应的Logistic方程. 生物数学学报, 1996, 11: 160-166
[15]  44 Duan X Y, Liu S Y, Gao P J, et. al. Volumetric productivity improvement for endoglucanase of Trichoderma pseudokoingii S-38. J Appl Microbiol, 2004, 96: 772-776
[16]  45 Dym C L. Principles of Mathematical Modeling. 2nd ed. San Diego, London, Burlington: Elsevier Academic Press, 2004. Chapter 8
[17]  46 Quackenbush J. Microarray data normalization and transformation. Nat Genet, 2002, 32: 496-501
[18]  47 金建玲, 杨维强, 高培基, 等. 突变率计算中细菌群体生长不同步系数的修正. 微生物学通报, 2009, 36: 446-452
[19]  48 Harrington P B, Urbas A, Tandler P J. Two-dimensional correlation analysis. Chemom Intell Lab Syst, 2000, 50: 149-174
[20]  10 Zervos C. On the validity of using semilogarithmic plots to determine initial velocity of enzyme-catalyzed reactions. J Theor Biol, 1975, 50: 253-258
[21]  11 Allison R D, Purich D L. Practical considerations in the design of initial velocity enzyme rate assays. Methods Enzymol, 1979, 63: 3-22
[22]  12 Hibino T. Nonfixed relationship of the Michaelis constant and maximum velocity with their corresponding rate constants. J Biol Chem, 2005, 280: 30671-30680
[23]  13 Kuo Y H, Scm M S. Extrapolation of correlation between 2 variables in 4 general medical journals. JAMA-J Am Med Assoc, 2002, 287: 2815-2817
[24]  14 唐启义, 胡国文, 冯明光, 等. Logistic 方程参数估算中的错误与修正. 生物数学学报, 1996, 11: 135-138
[25]  15 Hu Z S, Fu W J, Gao P J. Discussion and development on Cui-Lawsons model of single-species population. J Biomath, 1990, 5: 94-101
[26]  16 Norris J R, Robbons D W. Method in Microbiology. Volume 1. London and New York: Academic Press. PartI, Part Ⅷ
[27]  17 张怀强, 刘玉庆, 高培基, 等. 分批培养条件下细菌群体生长阶段的区分及生长参数的确定. 中国科学C辑: 生命科学, 2005, 35: 502-512
[28]  18 刘玉庆, 张怀强, 高培基, 等. 大肠杆菌群体的生理异质性对药敏实验的影响. 中国科学C辑: 生命科学, 2007, 37: 524-529
[29]  19 张怀强, 卢丽丽, 高培基, 等. 细菌群体异质性对生长动态过程的影响及其表征. 中国科学C辑: 生命科学, 2007, 37: 246-256
[30]  20 张怀强, 赵越, 高培基, 等. 构建大肠杆菌药敏试验新方法的探索. 中国科学: 生命科学, 2010, 11: 75-85
[31]  21 Wang L S, Zhang Y Z, Gao P J. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng, 2006, 93: 443-456
[32]  22 Wu B, Zhao Y, Gao P J. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochimica et Biophysica Sinica, 2006, 38: 372-378
[33]  23 Wu B, Wang L S, Gao P J. The combined effects of temperature and assay time on the catalytic ability and stability of 1,4-β-D-glucancellobiohydrolase I. Enzyme Microb Technol, 2008, 43: 237-244
[34]  24 Zhang H Q, Wang L S, Gao P J. Use of the contour approach for visualizing the dynamic behavior of intermediates during O-nitrophenyl-β-D-galactoside hydrolysis by b-galactosidase. Process Biochem, 2009, 44: 1374-1380
[35]  25 Wang L S, Zhang Y Z, Gao P J. A novel function for the cellulose binding module of cellubiohydrolase I. Sci China Life Sci, 2008, 51: 620-629
[36]  26 Bothe D. Instantaneous limits of reversible chemical reactions in presence of macroscopic convection. J Differ Equations, 2003, 193: 27-48
[37]  27 Bronshtein I N, Semendyayev K A. Handbook of Mathematics. 4th ed. New York: Springer-Verlag, 2004
[38]  28 Parchevsky K V, Parchcevsky V P. Determination of instantaneous growth rates using a cubic spline approximation. Thermochim Acta, 1998, 309: 181-192
[39]  29 Maccallum K J, Zhang J M. Curve-smoothing techniques using S-spline. Computer J, 1986, 29: 564-569
[40]  30 丛威, 欧阳藩. 微生物代谢的唯象关系和趋优行为. 化工学报, 2000, 51: 643-648
[41]  31 刘实. 液态培养基内跟踪细菌生长和一个新的细菌生命模式. 中国科学C辑: 生命科学, 1999, 29: 571-579
[42]  32 Elfwing A, LeMarc Y, Baramyi J. Observing growth and division of large numbers of individual bacteria by image analysis. Appl Environ Microbiol, 2004, 70: 675-678
[43]  33 Tyrcha J. Age-dependent cell cycle models. J theor Biol, 2001, 213: 89-101
[44]  34 Henson M A. Dynamic modeling of microbial cell populations. Curr Opin Biotechnol, 2003, 14: 460-467
[45]  35 Spratt B G, Maiden M C T. Bacterial population genetics, evolution, and epidemiology. Philos Trans R Soc B-Biol Sci, 1999, 354: 701-710
[46]  36 Field R J, Noyes R M. Oscillatory chemical reactions. Ann Rev Phys Chem, 1974, 25: 95-119
[47]  37 Duboc P, Stockar U. Modeling of oscillating cultivations of Saccharomyces cerevisiae: identification of population structure and expansion kinetics based on on-line measurements. Chem Eng Science, 2000, 55: 149-160
[48]  38 Mallette M F. Evaluation of growth by physical and chemical means. In: Norris J R, Ribbons D W, eds. Method in Microbiology. London, New York: Academic Press, 1969. 552-556

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133