全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肝细胞极性与膜蛋白分选的分子机制

DOI: 10.1360/052012-400, PP. 1-13

Keywords: 肝细胞极性,胆汁腔面,窦状隙面,膜蛋白极性转运,循环内体,胆汁淤积

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝细胞是高度特化的极性上皮细胞,细胞质膜蛋白的分选和极性转运对于肝细胞极性的建立与维持至关重要.首先,膜蛋白在内质网中合成,随后经高尔基体加工修饰,再由反面高尔基体进一步分选,最后通过膜泡运输等不同的机制分别转运到胆汁腔面或窦状隙面,行使其特殊的功能.近些年来,细胞内负责转运的细胞器和主要的分选信号已逐步被揭示.特别是循环内体也被证明参与了胆汁腔面和窦状隙面膜蛋白的极性分选和转运.肝细胞的极性一旦遭到破坏,将会引起胆汁分泌障碍以及其他肝脏功能的损伤,从而可能导致肝脏糖脂代谢紊乱,甚至丧失正常的生理功能.因此,深入研究肝脏细胞极性的形成与维持机制,将为多种肝脏疾病的预防和治疗寻找到新的方向和靶点,具有重要的理论和临床实践意义.

References

[1]  22 Apodaca G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic, 2001, 2: 149-159
[2]  23 Bretscher A, Edwards K, Fehon R G. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol, 2002, 3: 586-599
[3]  24 Fanning A S, Anderson J M. Protein modules as organizers of membrane structure. Curr Opin Cell Biol, 1999, 11: 432-439
[4]  25 Slimane T A, Trugnan G, van IJzendoorn S C. Raft-mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: role of distinct lipid microdomains. Mol Biol Cell, 2003, 14: 611-624
[5]  26 Ang A L, Taguchi T, Francis S. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membtane of MDCK cells. J Cell Biol, 2004, 167: 531-543
[6]  27 Wang E, Brown P S, Aroeti B, et al. Apical and basolateral endocytic pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic, 2000, 1: 480-493
[7]  28 Lapierre L A, Kumar R, Hales C M, et al. Myosin vb is associated with plasma membrane recycling systems. Mol Biol Cell, 2001, 12: 1843-1857
[8]  29 Sato T, Mushiake S, Kato Y, et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature, 2007, 448: 366-367
[9]  30 Silvis M R, Bertrand C A, Ameen N, et al. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell, 2009, 20: 2337-2350
[10]  31 Golachowska M R, Hoekstra D, van IJzendoorn S C. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol, 2010, 20: 618-626
[11]  32 Cullinane A R, Straatman-Iwanowska A, Zaucker A, et al. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype withdefects in epithelial polarization. Nat Genet, 2010, 42: 303-312
[12]  33 Diaz F, Gravotta D, Deora A, et al. Clathrin adaptor AP1B controls adenovirus infectivity of epithelial cells. Proc Natl Acad Sci USA, 2009, 106: 11143-11148
[13]  34 Gissen P, Johnson C A, Morgan N V, et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renaldysfunction-cholestasis (ARC) syndrome. Nat Genet, 2004, 36: 400-404
[14]  35 Wakabayashi Y, Lippincott-Schwartz J, Arias I M. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol Biol Cell, 2004, 15: 3485-3496
[15]  36 Nelson W J. Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans, 2008, 36: 149-155
[16]  37 Assémat E, Bazellières E, Pallesi-Pocachard E, et al. Polarity complex proteins. Biochim Biophys Acta, 2008, 1778: 614-630
[17]  38 Welchman D P, Mathies L D, Ahringer J. Similar requirements for CDC42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types. Dev Biol, 2007, 305: 347-357
[18]  39 Rehder D, Iden S, Nasdala I, et al. Junctional adhesion molecule participates in the formation of apico-basal polarity through different domains. Exp Cell Res, 2006, 312: 3389-3403
[19]  40 Shi S H, Jan L Y, Jan Y N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 2003, 112: 63-75
[20]  41 Elsum I, Yates L, Humbert P O, et al. The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem, 2012, 53: 141-168
[21]  42 Hyatt M A, Budge H, Symonds M E. Early developmental influences on hepatic organogenesis. Organogenesis, 2008, 4: 170-175
[22]  43 Jansen M, ten Klooster J P, Offerhaus G J, et al. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev, 2009, 89: 777-798
[23]  44 Hawley S A, Boudeau J, Reid J L, et al. Complexes between the LKB1 tumor suppressor, STRADa/b and MO25a/b are upstream kinasesin the AMP-activated protein kinase cascade. J Biol, 2003, 2: 28
[24]  45 张霞, 孙琳琳, 钟殿. LKB1-AMPK-mTOR信号传导通路在肿瘤中的研究进展. 中国肺癌杂志, 2011, 14: 685-688
[25]  46 Thaiparambil J T, Eggers C M, Marcus A I. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain. Mol Cell Biol, 2012, 32: 3203-3217
[26]  47 Brajenovic M, Joberty G, Küster B, et al. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem, 2004, 279: 12804-12811
[27]  48 Woods A, Heslegrave A J, Muckett P J, et al. LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochem J, 2011, 434: 49-60
[28]  49 Fu D, Wakabayashi Y, Lippincott-Schwartz J, et al. Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc Natl Acad Sci USA, 2011, 108: 1403-1408
[29]  50 Cheung I D, Bagnat M, Ma T P, et al. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol, 2012, 361: 68-78
[30]  51 Chang H, Zhang C, Cao Y. Expression and distribution of symplekin regulates the assembly and function of the epithelial tight junction. Histochem Cell Biol, 2012, 137: 319-327
[31]  52 Nagaki M, Moriwaki H. Transcription factor HNF and hepatocyte differentiation. Hepatol Res, 2008, 38: 961-969
[32]  53 Abelev G I, Lazarevich N L. Control of differentiation in progression of epithelial tumors. Adv Cancer Res, 2006, 95: 61-113
[33]  54 Parviz F, Matullo C, Garrison W D, et al. Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nat Gen, 2003, 34: 292-296
[34]  55 Chiang J Y. Hepatocyte nuclear factor 4α regulation of bile acid and drug metabolism. Expert Opin Drug Metab Toxicol, 2009, 5: 137-147
[35]  1 Bryant D M, Mostov K E. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol, 2008, 9: 887-901
[36]  2 Kojima T, Yamamoto T, Murata M, et al. Regulation of the blood-biliary barrier: interaction between gap and tight junctions in hepatocytes. Med Electron Microsc, 2003, 36: 157-164
[37]  3 Alrefai W A, Gill R K. Bile acid transporters: structure, function, regulation and pathophysiological implication. Pharm Res, 2007, 24: 1803-1823
[38]  4 Barlowe C K, Miller E A. Secretory protein biogenesis and traffic in the early secretory pathway. Genetics, 2013, 193: 383-410
[39]  6 Südhof T C, Rothman J E. Membrane fusion: grappling with SNARE and SM proteins. Science, 2009, 323: 474-477
[40]  7 Lee M C, Miller E A, Goldberg J, et al. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol, 2004, 20: 87-123
[41]  8 Kipp H, Arias I M. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J Biol Chem, 2000, 275: 15917-15925
[42]  9 Sai Y, Nies A T, Arias I M. Bile acid secretion and direct targeting of mdr1-green fluorescent protein from Golgi to the canalicular membrane in polarized WIF-B cells. J Cell Sci, 1999, 112: 4535-4545
[43]  10 Gravotta D, Carvajal-Gonzalez J M, Mattera R, et al. The clathrin adaptor AP-1A mediates basolateral polarity. Dev Cell, 2012, 22: 811-823
[44]  11 Br?ne B, Eggermont J. PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol, 2005, 288: C20-C29
[45]  12 Kennedy M B. Origin of PDZ (DHR, GLGF) domains. Trends Biochem Sci, 1995, 20: 350
[46]  13 Ismair M G, H?usler S, Stuermer C A, et al. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes. Hepatology, 2009, 49: 1673-1682
[47]  14 Klappe K, Hinrichs J W, Kroesen B J, et al. MRP1 and glucosylceramide are coordinately over expressed and enriched in rafts during multidrug resistance acquisition in colon cancer cells. Int J Cancer, 2004, 110: 511-522
[48]  15 Nyasae L K, Hubbard A L, Tuma P L. Transcytotic efflux from early endosomes is dependent on cholesterol and glycosphingolipids in polarized hepatic cells. Mol Biol Cell, 2003, 14: 2689-2705
[49]  16 Tuma P, Hubbard A L. Transcytosis: crossing cellular barriers. Physiol Rev, 2003, 83: 871-932
[50]  17 Wakabayashi Y, Lippincott-Schwartz J, Arias I M. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol Biol Cell, 2004, 15: 3485-3496
[51]  18 Lam P, Soroka C J, Boyer J L. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis, 2010, 30: 125-133
[52]  19 Soroka C J, Pate M K, Boyer J L. Canalicular export pumps traffic with polymeric immunoglobulin A receptor on the same microtubule-associated vesicle in rat liver. J Biol Chem, 1999, 274: 26416-26424
[53]  20 Wang W, Soroka C J, Mennone A, et al. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology, 2006, 131: 878-884
[54]  21 Kikuchi S, Hata M, Fukumoto K, et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet, 2002, 31: 320-325
[55]  5 Laufman O, Hong W, Lev S, et al. The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic SNARE complexes assembly. J Cell Sci, 2013, 126: 1506-1516

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133