[1] | Kueng S, Oppikofer M, Gasser SM. SIR Proteins and the Assembly of Silent Chromatin in Budding Yeast. Annu Rev Genet. 2013. doi: 10.1146/annurev-genet-021313-173730.
|
[2] | Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem. 2003;72: 481–516. doi: 10.1146/annurev.biochem.72.121801.161547. pmid:12676793
|
[3] | Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403: 795–800. doi: 10.1038/35001622. pmid:10693811
|
[4] | Tanny JC, Dowd GJ, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell. 1999;99: 735–745. pmid:10619427 doi: 10.1016/s0092-8674(00)81671-2
|
[5] | Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 14178–14182. doi: 10.1073/pnas.250422697. pmid:11106374
|
[6] | Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell. 1995;80: 583–592. pmid:7867066 doi: 10.1016/0092-8674(95)90512-x
|
[7] | Johnson A, Li G, Sikorski TW, Buratowski S, Woodcock CL, Moazed D. Reconstitution of heterochromatin-dependent transcriptional gene silencing. Mol Cell. 2009;35: 769–781. doi: 10.1016/j.molcel.2009.07.030. pmid:19782027
|
[8] | Martino F, Kueng S, Robinson P, Tsai-Pflugfelder M, van Leeuwen F, Ziegler M, et al. Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol Cell. 2009;33: 323–334. doi: 10.1016/j.molcel.2009.01.009. pmid:19217406
|
[9] | Aparicio OM, Billington BL, Gottschling DE. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991;66: 1279–1287. pmid:1913809 doi: 10.1016/0092-8674(91)90049-5
|
[10] | Klar AJ, Fogel S, Macleod K. MAR1-a Regulator of the HMa and HMalpha Loci in SACCHAROMYCES CEREVISIAE. Genetics. 1979;93: 37–50. pmid:17248968
|
[11] | Ivy JM, Klar AJ, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol. 1986;6: 688–702. pmid:3023863 doi: 10.1128/mcb.6.2.688
|
[12] | Rine J, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics. 1987;116: 9–22. pmid:3297920
|
[13] | Haber JE, George JP. A mutation that permits the expression of normally silent copies of mating-type information in Saccharomyces cerevisiae. Genetics. 1979;93: 13–35. pmid:16118901
|
[14] | Hopper AK, Hall BD. Mutation of a heterothallic strain to homothallism. Genetics. 1975;80: 77–85. pmid:1093938
|
[15] | Luo K, Vega-Palas MA, Grunstein M. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 2002;16: 1528–1539. doi: 10.1101/gad.988802. pmid:12080091
|
[16] | Rusche LN, Kirchmaier AL, Rine J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell. 2002;13: 2207–2222. doi: 10.1091/mbc.E02-03-0175. pmid:12134062
|
[17] | Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol. 2002;22: 4167–4180. pmid:12024030 doi: 10.1128/mcb.22.12.4167-4180.2002
|
[18] | Kitada T, Kuryan BG, Tran NNH, Song C, Xue Y, Carey M, et al. Mechanism for epigenetic variegation of gene expression at yeast telomeric heterochromatin. Genes Dev. 2012;26: 2443–2455. doi: 10.1101/gad.201095.112. pmid:23124068
|
[19] | Katan-Khaykovich Y, Struhl K. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J. 2005;24: 2138–2149. doi: 10.1038/sj.emboj.7600692. pmid:15920479
|
[20] | Kirchmaier AL, Rine J. Cell cycle requirements in assembling silent chromatin in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26: 852–862. doi: 10.1128/MCB.26.3.852-862.2006. pmid:16428441
|
[21] | Miller AM, Nasmyth KA. Role of DNA replication in the repression of silent mating type loci in yeast. Nature. 1984;312: 247–251. pmid:6390211 doi: 10.1038/312247a0
|
[22] | Lau A, Blitzblau H, Bell SP. Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae. Genes Dev. 2002;16: 2935–2945. doi: 10.1101/gad.764102. pmid:12435634
|
[23] | Fox CA, Ehrenhofer-Murray AE, Loo S, Rine J. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science. 1997;276: 1547–1551. pmid:9171055 doi: 10.1126/science.276.5318.1547
|
[24] | Li YC, Cheng TH, Gartenberg MR. Establishment of transcriptional silencing in the absence of DNA replication. Science. 2001;291: 650–653. doi: 10.1126/science.291.5504.650. pmid:11158677
|
[25] | Kirchmaier AL, Rine J. DNA replication-independent silencing in S. cerevisiae. Science. 2001;291: 646–650. doi: 10.1126/science.291.5504.646. pmid:11158676
|
[26] | Osborne EA, Dudoit S, Rine J. The establishment of gene silencing at single-cell resolution. Nat Genet. 2009;41: 800–806. doi: 10.1038/ng.402. pmid:19543267
|
[27] | Venkatasubrahmanyam S, Hwang WW, Meneghini MD, Tong AHY, Madhani HD. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proceedings of the National Academy of Sciences of the United States of America. 2007;104: 16609–16614. doi: 10.1073/pnas.0700914104. pmid:17925448
|
[28] | Martins-Taylor K, Sharma U, Rozario T, Holmes SG. H2A.Z (Htz1) controls the cell-cycle-dependent establishment of transcriptional silencing at Saccharomyces cerevisiae telomeres. Genetics. 2011;187: 89–104. doi: 10.1534/genetics.110.123844. pmid:20980239
|
[29] | Lacoste N, Utley RT, Hunter JM, Poirier GG, C?té J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. 2002;277: 30421–30424. doi: 10.1074/jbc.C200366200. pmid:12097318
|
[30] | Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 2001;15: 3286–3295. doi: 10.1101/gad.940201. pmid:11751634
|
[31] | Fingerman IM, Li H-C, Briggs SD. A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway. Genes Dev. 2007;21: 2018–2029. doi: 10.1101/gad.1560607. pmid:17675446
|
[32] | van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell. 2002;109: 745–756. pmid:12086673 doi: 10.1016/s0092-8674(02)00759-6
|
[33] | Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 2002;16: 1518–1527. doi: 10.1101/gad.1001502. pmid:12080090
|
[34] | Osborne EA, Hiraoka Y, Rine J. Symmetry, asymmetry, and kinetics of silencing establishment in Saccharomyces cerevisiae revealed by single-cell optical assays. Proceedings of the National Academy of Sciences of the United States of America. 2011;108: 1209–1216. doi: 10.1073/pnas.1018742108. pmid:21262833
|
[35] | Sussel L, Vannier D, Shore D. Epigenetic switching of transcriptional states: cis- and trans-acting factors affecting establishment of silencing at the HMR locus in Saccharomyces cerevisiae. Mol Cell Biol. 1993;13: 3919–3928. pmid:8321199 doi: 10.1128/mcb.13.7.3919
|
[36] | Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol. 1996;134: 1349–1363. pmid:8830766 doi: 10.1083/jcb.134.6.1349
|
[37] | Laroche T, Martin SG, Tsai-Pflugfelder M, Gasser SM. The dynamics of yeast telomeres and silencing proteins through the cell cycle. J Struct Biol. 2000;129: 159–174. doi: 10.1006/jsbi.2000.4240. pmid:10806066
|
[38] | Gao CY, Pinkham JL. Tightly regulated, beta-estradiol dose-dependent expression system for yeast. BioTechniques. 2000;29: 1226–1231. pmid:11126125
|
[39] | Marshall M, Mahoney D, Rose A, Hicks JB, Broach JR. Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae. Mol Cell Biol. 1987;7: 4441–4452. pmid:3325825 doi: 10.1128/mcb.7.12.4441
|
[40] | Cockell M, Palladino F, Laroche T, Kyrion G, Liu C, Lustig AJ, et al. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J Cell Biol. 1995;129: 909–924. pmid:7744964 doi: 10.1083/jcb.129.4.909
|
[41] | Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C, et al. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics. 1998;150: 613–632. pmid:9755194
|
[42] | Marcand S, Buck SW, Moretti P, Gilson E, Shore D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein. Genes Dev. 1996;10: 1297–1309. pmid:8647429 doi: 10.1101/gad.10.11.1297
|
[43] | Buck SW, Shore D. Action of a RAP1 carboxy-terminal silencing domain reveals an underlying competition between HMR and telomeres in yeast. Genes Dev. 1995;9: 370–384. pmid:7867933 doi: 10.1101/gad.9.3.370
|
[44] | Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell. 1996;84: 633–642. pmid:8598049 doi: 10.1016/s0092-8674(00)81038-7
|
[45] | Kennedy BK, Austriaco NR, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995;80: 485–496. pmid:7859289 doi: 10.1016/0092-8674(95)90499-9
|
[46] | Gardner RG, Nelson ZW, Gottschling DE. Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol. 2005;25: 6123–6139. doi: 10.1128/MCB.25.14.6123-6139.2005. pmid:15988024
|
[47] | Emre NCT, Ingvarsdottir K, Wyce A, Wood A, Krogan NJ, Henry KW, et al. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell. 2005;17: 585–594. doi: 10.1016/j.molcel.2005.01.007. pmid:15721261
|
[48] | Orlandi I, Bettiga M, Alberghina L, Vai M. Transcriptional profiling of ubp10 null mutant reveals altered subtelomeric gene expression and insurgence of oxidative stress response. 2004;279: 6414–6425. doi: 10.1074/jbc.M306464200.
|
[49] | Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 1998;17: 1819–1828. doi: 10.1093/emboj/17.6.1819. pmid:9501103
|
[50] | Lopez CR, Ribes-Zamora A, Indiviglio SM, Williams CL, Haricharan S, Bertuch AA. Ku must load directly onto the chromosome end in order to mediate its telomeric functions. Cohen-Fix O, editor. PLoS Genet. Public Library of Science; 2011;7: e1002233. doi: 10.1371/journal.pgen.1002233.
|
[51] | Gartenberg MR, Neumann FR, Laroche T, Blaszczyk M, Gasser SM. Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell. 2004;119: 955–967. doi: 10.1016/j.cell.2004.11.008. pmid:15620354
|
[52] | Patterson EE, Fox CA. The Ku complex in silencing the cryptic mating-type loci of Saccharomyces cerevisiae. Genetics. 2008;180: 771–783. doi: 10.1534/genetics.108.091710. pmid:18716325
|
[53] | Vandre CL, Kamakaka RT, Rivier DH. The DNA end-binding protein Ku regulates silencing at the internal HML and HMR loci in Saccharomyces cerevisiae. Genetics. 2008;180: 1407–1418. doi: 10.1534/genetics.108.094490. pmid:18791224
|
[54] | Mishra K, Shore D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr Biol. 1999;9: 1123–1126. pmid:10531008 doi: 10.1016/s0960-9822(99)80483-7
|
[55] | Wotton D, Shore D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 1997;11: 748–760. pmid:9087429 doi: 10.1101/gad.11.6.748
|
[56] | Hardy CF, Sussel L, Shore D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 1992;6: 801–814. pmid:1577274 doi: 10.1101/gad.6.5.801
|
[57] | Moretti P, Freeman K, Coodly L, Shore D. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 1994;8: 2257–2269. pmid:7958893 doi: 10.1101/gad.8.19.2257
|
[58] | Moretti P, Shore D. Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol Cell Biol. 2001;21: 8082–8094. doi: 10.1128/MCB.21.23.8082-8094.2001. pmid:11689698
|
[59] | Liu C, Lustig AJ. Genetic analysis of Rap1p/Sir3p interactions in telomeric and HML silencing in Saccharomyces cerevisiae. Genetics. 1996;143: 81–93. pmid:8722764
|
[60] | Liu C, Mao X, Lustig AJ. Mutational analysis defines a C-terminal tail domain of RAP1 essential for Telomeric silencing in Saccharomyces cerevisiae. Genetics. 1994;138: 1025–1040. pmid:7896088
|
[61] | Rudner AD, Hall BE, Ellenberger T, Moazed D. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin. Mol Cell Biol. 2005;25: 4514–4528. doi: 10.1128/MCB.25.11.4514-4528.2005. pmid:15899856
|
[62] | Onishi M, Liou G-G, Buchberger JR, Walz T, Moazed D. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell. 2007;28: 1015–1028. doi: 10.1016/j.molcel.2007.12.004. pmid:18158899
|
[63] | Armache K-J, Garlick JD, Canzio D, Narlikar GJ, Kingston RE. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 ? resolution. Science. 2011;334: 977–982. doi: 10.1126/science.1210915. pmid:22096199
|
[64] | Moazed D. Mechanisms for the inheritance of chromatin States. Cell. 2011;146: 510–518. doi: 10.1016/j.cell.2011.07.013. pmid:21854979
|
[65] | Miao F, Natarajan R. Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol. 2005;25: 4650–4661. doi: 10.1128/MCB.25.11.4650-4661.2005. pmid:15899867
|
[66] | Schübeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 2004;18: 1263–1271. doi: 10.1101/gad.1198204. pmid:15175259
|
[67] | Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J, et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell. 2009;35: 626–641. doi: 10.1016/j.molcel.2009.07.017. pmid:19682934
|
[68] | Altaf M, Utley RT, Lacoste N, Tan S, Briggs SD, C?té J. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell. 2007;28: 1002–1014. doi: 10.1016/j.molcel.2007.12.002. pmid:18158898
|
[69] | Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, Chin JW, et al. A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J. 2011;30: 2610–2621. doi: 10.1038/emboj.2011.170. pmid:21666601
|
[70] | Yang B, Britton J, Kirchmaier AL. Insights into the impact of histone acetylation and methylation on Sir protein recruitment, spreading, and silencing in Saccharomyces cerevisiae. J Mol Biol. 2008;381: 826–844. doi: 10.1016/j.jmb.2008.06.059. pmid:18619469
|
[71] | Lazarus AG, Holmes SG. A cis-acting tRNA gene imposes the cell cycle progression requirement for establishing silencing at the HMR locus in yeast. Genetics. 2011;187: 425–439. doi: 10.1534/genetics.110.124099. pmid:21135074
|
[72] | Ren J, Wang C-L, Sternglanz R. Promoter Strength Influences the S Phase Requirement for Establishment of Silencing at the Saccharomyces cerevisiae Silent Mating Type Loci. Genetics. 2010;186: 551–U172. doi: 10.1534/genetics.110.120592. pmid:20679515
|
[73] | Triolo T, Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature. 1996;381: 251–253. doi: 10.1038/381251a0. pmid:8622770
|
[74] | Connelly JJ, Yuan P, Hsu H-C, Li Z, Xu R-M, Sternglanz R. Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol Cell Biol. 2006;26: 3256–3265. doi: 10.1128/MCB.26.8.3256-3265.2006. pmid:16581798
|
[75] | van Welsem T, Frederiks F, Verzijlbergen KF, Faber AW, Nelson ZW, Egan DA, et al. Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol Cell Biol. 2008;28: 3861–3872. doi: 10.1128/MCB.02050-07. pmid:18391024
|
[76] | Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell. 1997;89: 381–391. pmid:9150138 doi: 10.1016/s0092-8674(00)80219-6
|
[77] | Mills KD, Sinclair DA, Guarente L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 1999;97: 609–620. pmid:10367890 doi: 10.1016/s0092-8674(00)80772-2
|
[78] | Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 1999;97: 621–633. pmid:10367891 doi: 10.1016/s0092-8674(00)80773-4
|
[79] | McAinsh AD, Scott-Drew S, Murray JA, Jackson SP. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol. 1999;9: 963–966. pmid:10508591 doi: 10.1016/s0960-9822(99)80424-2
|
[80] | Maillet L, Boscheron C, Gotta M, Marcand S, Gilson E, Gasser SM. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 1996;10: 1796–1811. pmid:8698239 doi: 10.1101/gad.10.14.1796
|
[81] | Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM. The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Research. 2009;19: 611–625. doi: 10.1101/gr.083881.108. pmid:19179643
|
[82] | Smith JS, Brachmann CB, Pillus L, Boeke JD. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics. 1998;149: 1205–1219. pmid:9649515
|
[83] | Tadeo X, Wang J, Kallgren SP, Liu J, Reddy BD, Qiao F, et al. Elimination of shelterin components bypasses RNAi for pericentric heterochromatin assembly. Genes Dev. 2013;27: 2489–2499. doi: 10.1101/gad.226118.113. pmid:24240238
|
[84] | Ai W, Bertram PG, Tsang CK, Chan TF, Zheng XFS. Regulation of subtelomeric silencing during stress response. Mol Cell. 2002;10: 1295–1305. pmid:12504006 doi: 10.1016/s1097-2765(02)00695-0
|
[85] | Halme A, Bumgarner S, Styles C, Fink GR. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell. 2004;116: 405–415. pmid:15016375 doi: 10.1016/s0092-8674(04)00118-7
|
[86] | Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA, Hommel M, et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 2009;7: e84. doi: 10.1371/journal.pbio.1000084. pmid:19402747
|
[87] | Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK, Rojas-Meza AP, et al. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell. 2005;121: 25–36. doi: 10.1016/j.cell.2005.01.037. pmid:15820676
|
[88] | Pérez-Martín J, Uría JA, Johnson AD. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 1999;18: 2580–2592. doi: 10.1093/emboj/18.9.2580. pmid:10228170
|
[89] | Juárez-Reyes A, Ramírez-Zavaleta CY, Medina-Sánchez L, Las Pe?as De A, Casta?o I. A protosilencer of subtelomeric gene expression in Candida glabrata with unique properties. Genetics. 2012;190: 101–111. doi: 10.1534/genetics.111.135251. pmid:22048024
|
[90] | Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9: 3273–3297. pmid:9843569 doi: 10.1091/mbc.9.12.3273
|
[91] | Goranov AI, Cook M, Ricicova M, Ben-Ari G, Gonzalez C, Hansen C, et al. The rate of cell growth is governed by cell cycle stage. Genes Dev. 2009;23: 1408–1422. doi: 10.1101/gad.1777309. pmid:19528319
|
[92] | Aparicio OM, Gottschling DE. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 1994;8: 1133–1146. pmid:7926719 doi: 10.1101/gad.8.10.1133
|
[93] | Motwani T, Poddar M, Holmes SG. Sir3 and Epigenetic Inheritance of Silent Chromatin in Saccharomyces cerevisiae. Mol Cell Biol. 2012;32: 2784–2793. doi: 10.1128/MCB.06399-11. pmid:22586263
|
[94] | Longtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14: 953–961. doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U. pmid:9717241
|
[95] | Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 1999;15: 1541–1553. doi: 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K. pmid:10514571
|
[96] | Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21: 947–962. doi: 10.1002/yea.1142. pmid:15334558
|
[97] | Sheff MA, Thorn KS. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast. 2004;21: 661–670. doi: 10.1002/yea.1130. pmid:15197731
|
[98] | Roy N, Runge KW. Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Curr Biol. 2000;10: 111–114. pmid:10662670 doi: 10.1016/s0960-9822(00)00298-0
|
[99] | Cuperus G, Shore D. Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8. Genetics. 2002;162: 633–645. pmid:12399377
|
[100] | Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122: 19–27. pmid:2659436
|
[101] | Lianga N, Williams EC, Kennedy EK, Doré C, Pilon S, Girard SL, et al. A Wee1 checkpoint inhibits anaphase onset. J Cell Biol. 2013;201: 843–862. doi: 10.1083/jcb.201212038. pmid:23751495
|
[102] | Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proceedings of the National Academy of Sciences of the United States of America. 1997;94: 2186–2191. pmid:9122169 doi: 10.1073/pnas.94.6.2186
|
[103] | Liang C, Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 1997;11: 3375–3386. pmid:9407030 doi: 10.1101/gad.11.24.3375
|
[104] | Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990;63: 751–762. pmid:2225075 doi: 10.1016/0092-8674(90)90141-z
|