全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2010 

The semiparametric Bernstein-von Mises theorem

DOI: 10.1214/11-AOS921

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a smooth semiparametric estimation problem, the marginal posterior for the parameter of interest is expected to be asymptotically normal and satisfy frequentist criteria of optimality if the model is endowed with a suitable prior. It is shown that, under certain straightforward and interpretable conditions, the assertion of Le Cam's acclaimed, but strictly parametric, Bernstein-von Mises theorem [Univ. California Publ. Statist. 1 (1953) 277-329] holds in the semiparametric situation as well. As a consequence, Bayesian point-estimators achieve efficiency, for example, in the sense of H\'{a}jek's convolution theorem [Z. Wahrsch. Verw. Gebiete 14 (1970) 323-330]. The model is required to satisfy differentiability and metric entropy conditions, while the nuisance prior must assign nonzero mass to certain Kullback-Leibler neighborhoods [Ghosal, Ghosh and van der Vaart Ann. Statist. 28 (2000) 500-531]. In addition, the marginal posterior is required to converge at parametric rate, which appears to be the most stringent condition in examples. The results are applied to estimation of the linear coefficient in partial linear regression, with a Gaussian prior on a smoothness class for the nuisance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133