全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2015 

Coarse-to-fine Multiple Testing Strategies

Full-Text   Cite this paper   Add to My Lib

Abstract:

We analyze control of the familywise error rate (FWER) in a multiple testing scenario with a great many null hypotheses about the distribution of a high-dimensional random variable among which only a very small fraction are false, or "active". In order to improve power relative to conservative Bonferroni bounds, we explore a coarse-to-fine procedure adapted to a situation in which tests are partitioned into subsets, or "cells", and active hypotheses tend to cluster within cells. We develop procedures for a standard linear model with Gaussian data and a non-parametric case based on generalized permutation testing, and demonstrate considerably higher power than Bonferroni estimates at the same FWER when the active hypotheses do cluster. The main technical difficulty arises from the correlation between the test statistics at the individual and cell levels, which increases the likelihood of a hypothesis being falsely discovered when the cell that contains it is falsely discovered (survivorship bias). This requires sharp estimates of certain quadrant probabilities when a cell is inactive.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133