全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2015 

Single Particle, Passive Microrheology in Biological Fluids with Drift

Full-Text   Cite this paper   Add to My Lib

Abstract:

Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are transformed to determine dynamic storage and loss moduli [Mason and Weitz (1995)]. A prevalent hurdle arises when there is a non-diffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a P\'eclet number, the MSD statistics are distorted, and thus the path data must be "corrected" for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation (MLE) that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of P\'eclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model because it affords tunable, sub-diffusive MSD statistics consistent with several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133