全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2012 

On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces a new framework to study the asymptotical behavior of the empirical distribution function (e.d.f.) of Gaussian vector components, whose correlation matrix $\Gamma^{(m)}$ is dimension-dependent. Hence, by contrast with the existing literature, the vector is not assumed to be stationary. Rather, we make a "vanishing second order" assumption ensuring that the covariance matrix $\Gamma^{(m)}$ is not too far from the identity matrix, while the behavior of the e.d.f. is affected by $\Gamma^{(m)}$ only through the sequence $\gamma_m=m^{-2} \sum_{i\neq j} \Gamma_{i,j}^{(m)}$, as $m$ grows to infinity. This result recovers some of the previous results for stationary long-range dependencies while it also applies to various, high-dimensional, non-stationary frameworks, for which the most correlated variables are not necessarily next to each other. Finally, we present an application of this work to the multiple testing problem, which was the initial statistical motivation for developing such a methodology.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133