全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2012 

Kernel density estimation for directional-linear data

DOI: 10.1016/j.jmva.2013.06.009

Full-Text   Cite this paper   Add to My Lib

Abstract:

A nonparametric kernel density estimator for directional-linear data is introduced. The proposal is based on a product kernel accounting for the different nature of both (directional and linear) components of the random vector. Expressions for bias, variance and Mean Integrated Squared Error (MISE) are derived, jointly with an asymptotic normality result for the proposed estimator. For some particular distributions, an explicit formula for the MISE is obtained and compared with its asymptotic version, both for directional and directional-linear kernel density estimators. In this same setting a closed expression for the bootstrap MISE is also derived.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133