全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Isotopic fractionation in proteins as a measure of hydrogen bond length

DOI: 10.1063/1.4927391

Full-Text   Cite this paper   Add to My Lib

Abstract:

If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor $\Phi$ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds we calculate $\Phi$ as a function of the proton donor-acceptor distance $R$. For numerical results, we use a parameterization of the model for symmetric O-H.... O bonds. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunnelling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total $\Phi$ as a function of $R$ with NMR experimental results for enzymes, and in particular with an empirical parametrisation $\Phi(R)$, used previously to determine bond lengths.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133