全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cloudbreak: Accurate and Scalable Genomic Structural Variation Detection in the Cloud with MapReduce

Full-Text   Cite this paper   Add to My Lib

Abstract:

The detection of genomic structural variations (SV) remains a difficult challenge in analyzing sequencing data, and the growing size and number of sequenced genomes have rendered SV detection a bona fide big data problem. MapReduce is a proven, scalable solution for distributed computing on huge data sets. We describe a conceptual framework for SV detection algorithms in MapReduce based on computing local genomic features, and use it to develop a deletion and insertion detection algorithm, Cloudbreak. On simulated and real data sets, Cloudbreak achieves accuracy improvements over popular SV detection algorithms, and genotypes variants from diploid samples. It provides dramatically shorter runtimes and the ability to scale to big data volumes on large compute clusters. Cloudbreak includes tools to set up and configure MapReduce (Hadoop) clusters on cloud services, enabling on-demand cluster computing. Our implementation and source code are available at http://github.com/cwhelan/cloudbreak .

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133