全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Precoding Based Network Alignment using Transform Approach for Acyclic Networks with Delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

The algebraic formulation for linear network coding in acyclic networks with the links having integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes, at any given time instant, is a $\mathbb{F}_{p^m}$-linear combination of the input symbols across different generations where, $\mathbb{F}_{p^m}$ denotes the field over which the network operates ($p$ is prime and $m$ is a positive integer). We use finite-field discrete fourier transform (DFT) to convert the output symbols at the sink nodes, at any given time instant, into a $\mathbb{F}_{p^m}$-linear combination of the input symbols generated during the same generation without making use of memory at the intermediate nodes. We call this as transforming the acyclic network with delay into {\em $n$-instantaneous networks} ($n$ is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (non-transform) approach if and only if there exists a network code satisfying sink demands in the transform approach. When the zero-interference conditions are not satisfied, we propose three Precoding Based Network Alignment (PBNA) schemes for three-source three-destination multiple unicast network with delays (3-S 3-D MUN-D) termed as PBNA using transform approach and time-invariant local encoding coefficients (LECs), PBNA using time-varying LECs, and PBNA using transform approach and block time-varying LECs. Their feasibility conditions are then analyzed.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133