全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solving the Maximum Agreement SubTree and the Maximum Compatible Tree problems on many bounded degree trees

Full-Text   Cite this paper   Add to My Lib

Abstract:

Given a set of leaf-labeled trees with identical leaf sets, the well-known "Maximum Agreement SubTree" problem (MAST) consists of finding a subtree homeomorphically included in all input trees and with the largest number of leaves. Its variant called "Maximum Compatible Tree" (MCT) is less stringent, as it allows the input trees to be refined. Both problems are of particular interest in computational biology, where trees encountered have often small degrees. In this paper, we study the parameterized complexity of MAST and MCT with respect to the maximum degree, denoted by D, of the input trees. It is known that MAST is polynomial for bounded D. As a counterpart, we show that the problem is W[1]-hard with respect to parameter D. Moreover, relying on recent advances in parameterized complexity we obtain a tight lower bound: while MAST can be solved in O(N^{O(D)}) time where N denotes the input length, we show that an O(N^{o(D)}) bound is not achievable, unless SNP is contained in SE. We also show that MCT is W[1]-hard with respect to D, and that MCT cannot be solved in O(N^{o(2^{D/2})}) time, SNP is contained in SE.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133