全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Long-Run Average Behaviour of Probabilistic Vector Addition Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the pattern frequency vector for runs in probabilistic Vector Addition Systems with States (pVASS). Intuitively, each configuration of a given pVASS is assigned one of finitely many patterns, and every run can thus be seen as an infinite sequence of these patterns. The pattern frequency vector assigns to each run the limit of pattern frequencies computed for longer and longer prefixes of the run. If the limit does not exist, then the vector is undefined. We show that for one-counter pVASS, the pattern frequency vector is defined and takes only finitely many values for almost all runs. Further, these values and their associated probabilities can be approximated up to an arbitrarily small relative error in polynomial time. For stable two-counter pVASS, we show the same result, but we do not provide any upper complexity bound. As a byproduct of our study, we discover counterexamples falsifying some classical results about stochastic Petri nets published in the~80s.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133