全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficient Test Selection in Active Diagnosis via Entropy Approximation

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the problem of diagnosing faults in a system represented by a Bayesian network, where diagnosis corresponds to recovering the most likely state of unobserved nodes given the outcomes of tests (observed nodes). Finding an optimal subset of tests in this setting is intractable in general. We show that it is difficult even to compute the next most-informative test using greedy test selection, as it involves several entropy terms whose exact computation is intractable. We propose an approximate approach that utilizes the loopy belief propagation infrastructure to simultaneously compute approximations of marginal and conditional entropies on multiple subsets of nodes. We apply our method to fault diagnosis in computer networks, and show the algorithm to be very effective on realistic Internet-like topologies. We also provide theoretical justification for the greedy test selection approach, along with some performance guarantees.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133