全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Hierarchical Bayesian Network for Arabic Handwritten Word Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a new probabilistic graphical model used to model and recognize words representing the names of Tunisian cities. In fact, this work is based on a dynamic hierarchical Bayesian network. The aim is to find the best model of Arabic handwriting to reduce the complexity of the recognition process by permitting the partial recognition. Actually, we propose a segmentation of the word based on smoothing the vertical histogram projection using different width values to reduce the error of segmentation. Then, we extract the characteristics of each cell using the Zernike and HU moments, which are invariant to rotation, translation and scaling. Our approach is tested using the IFN / ENIT database, and the experiment results are very promising.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133