全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Eclectic Extraction of Propositional Rules from Neural Networks

Full-Text   Cite this paper   Add to My Lib

Abstract:

Artificial Neural Network is among the most popular algorithm for supervised learning. However, Neural Networks have a well-known drawback of being a "Black Box" learner that is not comprehensible to the Users. This lack of transparency makes it unsuitable for many high risk tasks such as medical diagnosis that requires a rational justification for making a decision. Rule Extraction methods attempt to curb this limitation by extracting comprehensible rules from a trained Network. Many such extraction algorithms have been developed over the years with their respective strengths and weaknesses. They have been broadly categorized into three types based on their approach to use internal model of the Network. Eclectic Methods are hybrid algorithms that combine the other approaches to attain more performance. In this paper, we present an Eclectic method called HERETIC. Our algorithm uses Inductive Decision Tree learning combined with information of the neural network structure for extracting logical rules. Experiments and theoretical analysis show HERETIC to be better in terms of speed and performance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133