全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improved RIP Analysis of Orthogonal Matching Pursuit

Full-Text   Cite this paper   Add to My Lib

Abstract:

Orthogonal Matching Pursuit (OMP) has long been considered a powerful heuristic for attacking compressive sensing problems; however, its theoretical development is, unfortunately, somewhat lacking. This paper presents an improved Restricted Isometry Property (RIP) based performance guarantee for T-sparse signal reconstruction that asymptotically approaches the conjectured lower bound given in Davenport et al. We also further extend the state-of-the-art by deriving reconstruction error bounds for the case of general non-sparse signals subjected to measurement noise. We then generalize our results to the case of K-fold Orthogonal Matching Pursuit (KOMP). We finish by presenting an empirical analysis suggesting that OMP and KOMP outperform other compressive sensing algorithms in average case scenarios. This turns out to be quite surprising since RIP analysis (i.e. worst case scenario) suggests that these matching pursuits should perform roughly T^0.5 times worse than convex optimization, CoSAMP, and Iterative Thresholding.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133