全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2004 

Homology of formal deformations of proper etale Lie groupoids

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, the cyclic homology theory of formal deformation quantizations of the convolution algebra associated to a proper etale Lie groupoid is studied. We compute the Hochschild cohomology of the convolution algebra and express it in terms of alternating multi-vector fields on the associated inertia groupoid. We introduce a noncommutative Poisson homology whose computation enables us to determine the Hochschild homology of formal deformations of the convolution algebra. Then it is shown that the cyclic (co)homology of such formal deformations can be described by an appropriate sheaf cohomology theory. This enables us to determine the corresponding cyclic homology groups in terms of orbifold cohomology of the underlying orbifold. Using the thus obtained description of cyclic cohomology of the deformed convolution algebra, we give a complete classification of all traces on this formal deformation, and provide an explicit construction.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133