全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2004 

An extremal problem on potentially $K_{p,1,1}$-graphic sequences

Full-Text   Cite this paper   Add to My Lib

Abstract:

A sequence $S$ is potentially $K_{p,1,1}$ graphical if it has a realization containing a $K_{p,1,1}$ as a subgraph, where $K_{p,1,1}$ is a complete 3-partite graph with partition sizes $p,1,1$. Let $\sigma(K_{p,1,1}, n)$ denote the smallest degree sum such that every $n$-term graphical sequence $S$ with $\sigma(S)\geq \sigma(K_{p,1,1}, n)$ is potentially $K_{p,1,1}$ graphical. In this paper, we prove that $\sigma (K_{p,1,1}, n)\geq 2[((p+1)(n-1)+2)/2]$ for $n \geq p+2.$ We conjecture that equality holds for $n \geq 2p+4.$ We prove that this conjecture is true for $p=3$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133