全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Scalable RFCMOS Model for 90?nm Technology

DOI: 10.1155/2011/452348

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the formation of the parasitic components that exist in the RF MOSFET structure during its high-frequency operation. The parasitic components are extracted from the transistor's S-parameter measurement, and its geometry dependence is studied with respect to its layout structure. Physical geometry equations are proposed to represent these parasitic components, and by implementing them into the RF model, a scalable RFCMOS model, that is, valid up to 49.85?GHz is demonstrated. A new verification technique is proposed to verify the quality of the developed scalable RFCMOS model. The proposed technique can shorten the verification time of the scalable RFCMOS model and ensure that the coded scalable model file is error-free and thus more reliable to use. 1. Introduction The relentless scaling down of CMOS technologies has greatly improved the RF performance of MOSFET. It has been reported that for a technology node of 90?nm, high of 209?GHz and of 248?GHz are achieved [1]. Furthermore, the scaling down of the transistor has brought about lower , and it is now comparable to the reported SiGe BJT process [1, 2]. The improved RFCMOS performance coupled with its lower cost has motivated circuit designers to integrate digital, mixed-signal, and RF transceiver blocks into a single chip [3–7]. However, for these RF chips to operate at higher-frequency region, the circuit design specifications will become more stringent, and this will require accurate and scalable RFCMOS models that can be simulated accurately at high-frequency region. Furthermore, by employing scalable RF CMOS model into the process design kit (PDK), the circuit design environment is improved, and this can help circuit designers in their circuit optimization and shorten the design cycle and time to market of these RF chips. Most of the RF models developed today are based on the macromodelling approach. In this approach, subcircuit components are added to the transistor’s core model to model the RF parasitic of MOSFET structure [8, 9], and the core model used is usually the commercially available models such as BSIM3v3 [10] and BSIM4 [11]. The subcircuit components are extracted from the measured S-parameters of the transistor, but the extracted values of these RF components can differ when different extraction technique is used. All the existing RF parameter extraction technique is based on the transistor’s small-signal equivalent circuit analysis. Therefore, to characterize an RF MOSFET, all its RF parasitic elements must be included into the small-signal equivalent circuit.

References

[1]  K. Kuhn, R. Basco, D. Becher et al., “A comparison of state-of-the-art NMOS and SiGe HBT devices for analog/mixed-signal/RF circuit applications,” in Proceedings of the Symposium on VLSI Technology: Digest of Technical Papers, pp. 224–225, June 2004.
[2]  D. R. Greenberg, B. Jagannathan, S. Sweeney, G. Freeman, and D. Ahlgren, “Noise performance of a low base resistance 200 GHz SiGe technology,” in Proceedings of the IEEE International Devices Meeting Digest (IEDM '02), pp. 787–790, December 2002.
[3]  A. A. Abidi, “RF CMOS Comes of Age,” IEEE Journal of Solid-State Circuits, vol. 39, no. 4, pp. 549–561, 2004.
[4]  F. Op't Eynde, J. Schmit, V. Charlier et al., “A fully-integrated single-chip SOC for bluetooth,” in Proceedings of the IEEE International Solid-State Circuits Conference: Digest of Technical Papers, pp. 196–197, February 2001.
[5]  H. Darabi, S. Khorram, E. Chien et al., “A 2.4GHz CMOS transceiver for bluetooth,” in Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 200–201, February 2001.
[6]  P. T. M. van Zeijl, J. Eikenbroek, P. Vervoort et al., “A bluetooth radio in 0.18 μm CMOS,” in Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 86–87, February 2002.
[7]  A. Leeuwenburgh, J. ter Laak, A. Mulders et al., “A 1.9GHz fully integrated CMOS DECT transceiver,” in Proceedings of the IEEE International Solid-State Circuits Conference: Digest of Technical Papers, pp. 450–507.
[8]  S. F. Tin, A. A. Osman, K. Mayaram, and C. Hu, “A simple subcircuit extension of the BSIM3v3 model for CMOS RF design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 612–624, 2000.
[9]  S. Lee and H. K. Yu, “A new extraction method for BSIM3v3 model parameters of RF silicon MOSFETs,” in Proceedings of the IEEE International Conference on Microelectronic Test Structures (ICMTS '99), pp. 95–98, March 1999.
[10]  “Official web Site of the BSIM3v3 model,” http://www-device.eecs.berkeley.edu/~bsim3/get.html.
[11]  “Official web Site of the BSIM4 model,” http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html.
[12]  M. Lee, R. B. Anna, J. C. Lee, S. M. Parker, and K. M. Newton, “A scalable BSIM3v3 RF model for multi-finger NMOSFETS with ring substrate contact,” in Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 5, pp. 221–224, May 2002.
[13]  S. P. Voinigescu, M. Tazlauanu, P. C. Ho, and M. T. Yang, “Direct extraction methodology for geometry-scalable RF-CMOS models,” in Proceedings of the IEEE International Conference on Microelectronic Test Structures (ICMTS '04), vol. 14, pp. 235–240, March 2004.
[14]  S. Yoshitomi, A. Bazigos, and M. Bucher, “EKV3 parameter extraction and characterization of 90nm RF-CMOS technology,” in Proceedings of the 14th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES '07), pp. 74–79, June 2007.
[15]  X. Jin, J.-J. Ou, C.-H. Chen et al., “An effective gate resistance model for CMOS RF and noise modelling,” in Proceedings of the IEEE International Electron Devices Meeting on Technical Digest, pp. 961–964, December 1998.
[16]  A. F. Tong, K. S. Yeo, L. Jia, C. Q. Geng, J. -G. Ma, and M. A. Do, “Simple and accurate extraction methodology for RF MOSFET valid up to 20 GHz,” IEE Proceedings: Circuits, Devices and Systems, vol. 151, no. 6, pp. 587–592, 2004.
[17]  Y. Cheng and M. Matloubian, “High frequency characterization of gate resistance in RF MOSFETs,” IEEE Electron Device Letters, vol. 22, no. 2, pp. 98–100, 2001.
[18]  Troels Emil Kolding, “Calculation of MOSFET Gate impedance,” Tech. Rep. R98-1009, 1998.
[19]  C. Enz and Y. H. Cheng, “MOS transistor modeling for RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 186–201, 2000.
[20]  A. Nakamura, N. Yoshikawa, T. Miyazako, T. Oishi, H. Ammo, and K. Takeshita, “Layout optimization of RF CMOS in the 90nm generation,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, pp. 373–376, June 2006.
[21]  Y. H. Cheng, “MOSFET modelling for RF IC design,” in CMOS RF Modelling, Characterization and Application, pp. 119–196, World Scientific, Singapore, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133