全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temperature Dependence of GaN HEMT Small Signal Parameters

DOI: 10.1155/2011/945189

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents the temperature dependence of small signal parameters of GaN/SiC HEMTs across the 0–150°C range. The changes with temperature for transconductance ( ), output impedance ( and ), feedback capacitance ( ), input capacitance ( ), and gate resistance ( ) are measured. The variations with temperature are established for , , , , , and in the GaN technology. This information is useful for MMIC designs. 1. Introduction Devices based on wide bandgap materials (such as GaN, SiC) promise much higher power densities and potential for higher temperature operation than GaAs, Si, and SiGe devices [1–3]. The reliability and performance of HEMTs and MMICs depend critically on the device operating channel temperature [4, 5]. Previous studies [6–11] have focused on various effects with temperature. However, the referenced temperature was the chuck (or base plate) temperature. This study presents characterization and comparison of two current GaN/SiC devices from different foundries across temperature where the temperature is reference to the channel reference. 2. Measured Results To quantize the effect of temperature on the performance of GaN/SiC device, two state-of-the-art AlGaN/GaN HEMT devices were characterized at ?25, 25, 75, and 125°C base plate (on-wafer chuck). At each temperature, S-parameters are measured at = 20?V and a fixed drain current (equal to 25% of the room temperature ) and the small signal extracted. The dissipated DC power is fixed, and hence the channel temperature to the chuck temperature is constant. For example, in the first device the temperature difference between the channel and the chuck was 26°C (calculated from finite element simulation of the structure), temperature contours shown in Figure 1. In both devices, the gate length ( ) for the HEMT was about 0.25?μm and the gate width was 2 × 100?μm. A standard equivalent circuit is used to match the measurements, see Figure 2. The model used includes a source inductance and resistance to model the via holes to ground. In the current case, a via hole structure was measured independently in order to find and . Additionally, the input and output feeding structures (Figure 3), were constructed on full wave analysis simulator (EM Sight from Microwave Office Suite) and simulated. The structures were used to de-embed the S-parameters. This is a critical step to separate the intrinsic device behavior from the extrinsic-layout-dependent behavior. In the optimization, the S-parameters are normalized to give equal-weight real and imaginary parts as well to all the parameters (S11,

References

[1]  Y.-F. Wu, A. Saxler, M. Moore et al., “30-W/mm GaN HEMTs by field plate optimization,” IEEE Electron Device Letters, vol. 25, no. 3, pp. 117–119, 2004.
[2]  Y. Pei, R. Chu, N. A. Fichtenbaum et al., “Recessed slant gate AlGaN/GaN high electron mobility transistors with 20.9 W/mm at 10?GHz,” Japanese Journal of Applied Physics, vol. 46, no. 45, pp. L1087–L1089, 2007.
[3]  J. S. Moon, D. Wong, M. Hu et al., “55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge,” IEEE Electron Device Letters, vol. 29, no. 8, pp. 834–837, 2008.
[4]  A. Darwish, A. Bayba, and H. A. Hung, “Thermal resistance calculation of AlGaN-GaN devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 11, pp. 2611–2620, 2004.
[5]  A. M. Darwish, A. Bayba, and H. A. Hung, “FET gate length impact on reliability,” in Proceedings of the IEEE MTT-S International Microwave Symposium, (IMS '07), pp. 311–314, Honolulu, Hawaii, USA, June 2007.
[6]  T. Palacios, S. Rajan, A. Chakraborty et al., “Influence of the dynamic access resistance in the gm and f T linearity of AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 52, no. 10, pp. 2117–2122, 2005.
[7]  D. W. DiSanto and C. R. Bolognesi, “At-bias extraction of access parasitic resistances in AlGaN/GaN HEMTs: impact on device linearity and channel electron velocity,” IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 2914–2919, 2006.
[8]  C. F. Campbell and S. A. Brown, “An analytic method to determine GaAs FET parasitic inductances and drain resistance under active bias conditions,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, pp. 1241–1247, 2001.
[9]  C. L. Lou, W. K. Chim, D. S. H. Chan, and Y. Pan, “A novel single-device DC method for extraction of the effective mobility and source-drain resistances of fresh and hot-carrier degraded drain-engineered MOSFET's,” IEEE Transactions on Electron Devices, vol. 45, no. 6, pp. 1317–1323, 1998.
[10]  S. Manohar, A. Pham, and N. Evers, “Direct determination of the bias-dependent series parasitic elements in SiC MESFETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2 I, pp. 597–600, 2003.
[11]  M. Thorsell, K. Andersson, M. Fagerlind, M. Südow, P. A. Nilsson, and N. Rorsman, “Thermal study of the high-frequency noise in GaN HEMTs,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 1, Article ID 4717215, pp. 19–26, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133