全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dual-Frequency Decoupling Networks for Compact Antenna Arrays

DOI: 10.1155/2011/249647

Full-Text   Cite this paper   Add to My Lib

Abstract:

Decoupling networks can alleviate the effects of mutual coupling in antenna arrays. Conventional decoupling networks can provide decoupled and matched ports at a single frequency. This paper describes dual-frequency decoupling which is achieved by using a network of series or parallel resonant circuits instead of single reactive elements. 1. Introduction The adverse effects of mutual coupling on the performance of multiport antennas are well known [1]. The effects can be countered by using a decoupling network which provides an additional signal path to effectively cancel the external coupling between array elements to yield decoupled ports [2–4]. In its simplest form, the decoupling network consists of reactive elements connected between neighbouring array elements, but this approach only applies when the mutual admittances between elements are all purely imaginary [2]. The design of decoupling networks for arrays with arbitrary complex mutual admittances has been described [3–5]. In [6], closed-form design equations for the decoupling network elements of symmetrical 2-element and 3-element arrays were presented. This concept was extended to the decoupling of larger, circulant symmetric arrays through repeated decoupling of the eigenmodes [7]. However, these methods are only applicable to the decoupling of arrays over a small bandwidth at a single frequency. This paper describes dual-frequency decoupling of arrays. The procedure is based on the methods described in [6, 7], but where each reactive element in the single-frequency decoupling network is replaced with either a series or parallel combination of an inductor and a capacitor in order to achieve simultaneous decoupling and matching at two frequencies. 2. Theory The procedures described in [6] or [7] may be employed to design a network at two distinct frequencies, and . Subsequently, the relations provided in [8] can be used to design L-section impedance matching networks which match the decoupled port impedances to the system impedance at and . Refer, for example, to the decoupling and matching networks for a 2-element array, shown in Figure 1. ? and are the elements of the decoupling network at frequency , while and are the corresponding values at frequency . The element values are obtained in closed form from [6]. Ports 1′ and 2′ will thus be decoupled at both frequencies, but the port impedances and are not matched to . The matching networks shown in Figure 1 are for the case where and . and and are the matching network elements at frequency , whereas and are the elements at frequency .

References

[1]  A. C. Ludwig, “Mutual coupling, gain and directivity of an array of two identical antennas,” IEEE Transactions on Antennas and Propagation, vol. 24, no. 6, pp. 837–841, 1976.
[2]  H. J. Chaloupka, X. Wang, and J. C. Coetzee, “A superdirective 3-element array for adaptive beamforming,” Microwave and Optical Technology Letters, vol. 36, no. 6, pp. 425–430, 2003.
[3]  P. T. Chua and J. C. Coetzee, “Microstrip decoupling networks for low-order multiport arrays with reduced element spacing,” Microwave and Optical Technology Letters, vol. 46, no. 6, pp. 592–597, 2005.
[4]  J. Weber, C. Volmer, K. Blau, R. Stephan, and M. A. Hein, “Miniaturized antenna arrays using decoupling networks with realistic elements,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2733–2740, 2006.
[5]  S. C. Chen, Y. S. Wang, and S. J. Chung, “A decoupling technique for increasing the port isolation between two strongly coupled antennas,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 12, pp. 3650–3658, 2008.
[6]  J. C. Coetzee and Y. Yu, “Closed-form design equations for decoupling networks of small arrays,” Electronics Letters, vol. 44, no. 25, pp. 1441–1442, 2008.
[7]  J. C. Coetzee and Y. Yu, “Design of decoupling networks for circulant symmetric antenna arrays,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 291–294, 2009.
[8]  D. M. Pozar, Microwave Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133